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Abstract. Analytical expressions are proposed for predicting the rocking response of rigid free-
standing building contents subjected to seismic-induced floor excitations. The study considers 
a wide range of rigid block geometries and seismic floor acceleration histories that were 
recorded during actual earthquakes in instrumented Californian buildings, so as to cover, in a 
fully probabilistic manner, the entire spectrum of potential pure rocking responses, i.e. from 
the initiation of rocking up to the block overturning. Contrary to past observations on anchored 
building contents (prior to any failure in their anchorage system that could alter their response 
and mode of failure), it is shown that the response of free-standing blocks is not influenced by 
the predominant period of the supporting structure. The proposed set of equations can be 
utilised for estimating the response statistics and consequently for undertaking an analytical 
seismic fragility assessment on rocking building contents. 

1 INTRODUCTION 

Non-structural components represent a significant part in a building’s investment value and its 
operability. Hence, any seismic-induced damages to these elements are anticipated to have a 
substantial footprint in consequent financial integrity, business continuity, and resilience. The 
risk of non-structural damages is even higher if one considers that they could be triggered at 
lower, and yet more frequent, seismic intensity levels than those required to induce damages in 
structural elements, at least in modern buildings where stringent quality assurance standards 
have been exercised during construction. Apparently, non-structural damages are not only 
likely to occur more frequently than structural ones, but could also render an otherwise intact 
critical facility, e.g., a hospital or an airport, unusable for a substantial amount of time. 
Furthermore, apart from their impact on economy and business continuity aspects, building 
contents often represent invaluable cultural heritage items, such as museum artefacts (e.g. Parisi 
and Augenti, 2013; Spyrakos et al, 2016), in which case the associated losses are considered 
unacceptable from a social, cultural and historical standpoint.  

 Depending on their sensitivity to different damage metrics, non-structural components 
are classified by FEMA 356 (FEMA, 2000) into two major categories; the deformation-
sensitive and the acceleration-sensitive ones. The damage in deformation-sensitive components 
is primarily induced by the drifts or deformations of the supporting structure. By contrast, the 
damage in acceleration-sensitive components is due to the imposed inertia forces that are 
developed during ground shaking. With reference to acceleration-sensitive components, these 
could be further discretised into those that are fully anchored to the supporting structure, those 
that are unanchored, and those that are partially anchored, as their anchorage is not designed to 
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withstand earthquake loading. In the latter two cases, assuming that a non-earthquake designed 
anchorage will more likely fail under seismic excitation, the (essentially free-standing) 
components, could undergo sliding, rocking, a combined response mode that includes both 
rocking and sliding, or overturning when subjected to base (ground or floor) accelerations.  

 Up until now, several studies have investigated the seismic response of free-standing 
building contents. Nevertheless, the majority of them has been focused on blocks that rest at 
the ground level, for example Housner (1963), Yim et al (1980), Makris and Roussos (2000),  
Makris and Konstantinidis (2003), Dimitrakopoulos and DeJong (2012), Makris and Vassiliou 
(2013), Bachmann et al (2017), Bachmann et al (2018), Giouvanidis and Dimitrakopoulos, 
(2018) and Kazantzi et al (2021) and substantially fewer focus on contents that rest at higher 
floor levels, e.g. Konstantinidis and Makris (2009), Petrone et al (2017), Fragiadakis and 
Diamantopoulos (2020), in which case are subjected to floor rather than ground seismic 
acceleration histories.  In practically all cases, pure rocking has been assumed as the 
predominant seismic response mechanism. This essentially implies that sufficient friction is 
present between the rigid block and the horizontal resting plane interface to arrest component 
sliding. It should be noted that sliding is a likely response mode for free-standing blocks (e.g. 
Lopez Garcia and Soong, 2003; Konstantinidis and Makris, 2009; Konstantinidis and Nikfar, 
2015) yet its consideration remains beyond the scope of the present research.  

 Herein, simplified analytical expressions are offered that can be exploited by practicing 
design engineers and researchers for readily evaluating the seismic response statistics (i.e. the 
median and dispersion) of rocking-dominated (Petrone et al, 2017) building contents located at 
any floor level, other than the ground. The adopted methodology is built upon an analogous 
research work (Kazantzi et al, 2021), that was recently published by the authors, in which 
analytical predictive relationships for ground supported rocking blocks subjected to ordinary 
ground motions were proposed. To account for the filtering of the ground motion through the 
supporting building, we employ a set of actual horizontal floor acceleration histories recorded 
in instrumented buildings. The effect of vertical floor excitation on the rocking components 
was disregarded in view of past findings (e.g. Makris and Kampas, 2016; Linde et al, 2020) 
that it is negligible for almost all practical applications, especially when adopting a probabilistic 
treatment (Lachanas et al, 2022a).  

2 BRIEF REVIEW IN THE ROCKING OSCILLATOR DYNAMICS 

Our basis is the pioneering work of Housner (1963) on the rocking and overturning of free-
standing blocks subjected to horizontal accelerations at their bases. Assuming that the rocking 
block has a rectangular shape of height 2h and base width 2b (see Figure 1) we can define a set 
of normalized geometrical properties for the rigid block, i.e., its stability (or slenderness) angle 
𝛼, defined as, 

         𝛼 = tan                                                                  (1)  

 

and its half diagonal 𝑅 

     𝑅 = √𝑏 + ℎ         (2) 

Consequently, for a block that is subjected to a horizontal acceleration at its base, �̈�, the 
equation of motion takes the following form (e.g. Vassiliou and Makris, 2013; Dar et al, 2016), 

                               �̈� = −𝑝 ∙ sin(𝛼 ∙ sgn(𝜃) − 𝜃) +
̈
∙ cos (𝛼 ∙ sgn(𝜃) − 𝜃)                    (3) 
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where, sgn is the signum function, g is the acceleration of gravity, and 𝑝 the characteristic 
frequency parameter of the rigid rocking block equal to, 

                                                               𝑝 =
∙

∙
                                                                              (4) 

 

With reference to the characteristic frequency 𝑝, it should be noted that is by no means 
equivalent to the natural frequency of an oscillating pendulum (Makris and Konstantinidis, 
2003), since the oscillation frequency strongly depends on the rocking amplitude (Housner, 
1963; Yim et al, 1980; Makris and Konstantinidis, 2003). Yet, it is often considered a measure 
of the dynamic characteristics of the block, and will be used in such a manner in this study as 
well.  

 

Figure 1. Generic representation of rocking components located at different floor levels and the 
geometry of a rocking block per Housner (1963).  

 Equation (3) can be solved using standard ordinary differential equation solvers. In this 
study the software developed by Vassiliou (2021) was employed, allowing a rapid estimation 
of the peak rocking angle 𝜃 . The energy losses due to impacts, have been accounted by the 
coefficient of restitution, 𝜂 (Dimitrakopoulos and DeJong, 2012) that essentially provides a 
relation between the pre- and post-impact angular velocities, �̇� and �̇� , respectively, and is 
defined as, 

                                                         𝜂 =
̇

̇                                                                                (5) 

The coefficient of restitution 𝜂 typically varies between 0.7 and 1.0 (e.g. Priestley et al, 1978; 
Petrone et al, 2017; Ceh et al, 2018). On account of past observations (e.g. Bachmann et al, 
2018; Kazantzi et al, 2021) that showcased the moderate effect of the restitution coefficient, as 
opposed to other system parameters, its randomness was disregarded herein and a typical value 
of 𝜂 = 0.92 was assumed (e.g. Giouvanidis and Dimitrakopoulos, 2017; Kazantzi et al, 2021), 
essentially implying a total energy loss of ~15% after every impact.  It should be pointed out 
that the adoption of this single value of the restitution coefficient is only justified on the basis 
of a probabilistic treatment of the rocking problem of multiple components within a building, 
as the one undertaken in this study, since the “true” value of 𝜂 can only be experimentally 
determined. Its accurate estimation remains substantially important for assessing the rocking 



4 

performance of a rocking oscillator on a deterministic basis. Nevertheless, as was showcased 
by several past studies (e.g. Yim et al, 1980; Voyagaki and Vamvatsikos, 2015; Bachmann et 
al, 2017), the probabilistic seismic response assessment of rocking blocks is a robust way for 
effectively dealing with the high uncertainty inherent in such problems, and to the authors 
opinion, given the current-state-of-knowledge, the only meaningful design route.  

3 SEISMIC RESPONSE EVALUATION OF ROCKING BUILDING CONTENS 

The seismic response statistics of the free-standing rocking building contents, from the rocking 
initiation up to the overturning state, were evaluated on the basis of Incremental Dynamic 
Analysis (IDA, Vamvatsikos and Cornell, 2002; Lachanas and Vamvatsikos, 2022) applying as 
input motions at the base of the rocking blocks a suite of 105 distinct floor acceleration histories 
that were recorded during eight major earthquake events at the roof or the upper floors of 
instrumented buildings in California. In particular, the suite of floor motions was recorded in 
47 buildings of variable lateral load resisting systems and heights, with the latter ranging from 
2 to 52 stories. Only floor recordings producing 5% damped floor spectral acceleration 
ordinates higher than 0.9g were considered. It should be noted that the response in a number of 
the considered instrumented buildings was not restricted to the realm of linearity and several of 
them sustained nonnegligible damages. The strong floor accelerations that were recorded in 
structures that responded nonlinearly provides further evidence to an observation that was 
reported before by other past studies (e.g. Taghavi and Miranda, 2005) who suggested that the 
yielding of the primary structure is likely to have an adverse impact on the floor acceleration 
demands that are imparted in the building contents. More details about the characteristics of 
these recordings and record stations can be found in Kazantzi et al (2020) whereas the recorded 
floor acceleration histories are available from the website of the Center for Engineering Strong 
Motion Data (CESMD, 2018).  

 Floor acceleration spectra for conventional elastic oscillators often exhibit a strong 
narrow band amplification effect due to the filtering of the ground motion through the building, 
an effect that is fully captured by the utilized floor histories and cannot be discounted in any 
building content analysis. The decision to adopt recorded floor motions as opposed to analytical 
ones, essentially removes any bias associated with the latter, since the utilized input motions 
were recorded during real earthquakes in actual instrumented buildings. The floor acceleration 
histories were incrementally scaled, utilizing a constant increment of 0.01g, to obtain response 
estimates for the considered blocks from rocking initiation up to the block overturning, which 
for a rocking block signifies its collapse state. Resurrections, i.e., the appearance of stable 
response at intensities above the first appearance of overturning, were disregarded. This no-
resurrection assumption is consistent with an acceptance of damageability of components after 
high energy impacts, which are typically associated with resurrections, rendering the results 
suitable for most practical applications, with the exception of the most durable of contents 
(Lachanas and Vamvatsikos, 2022).   

 To fully define an IDA curve, one needs an Engineering Demand Parameter (EDP) and 
a practical, efficient and sufficient Intensity Measure (IM, Luco and Cornell, 2007; Kazantzi 
and Vamvatsikos, 2015). In this study the adopted EDP was the absolute value of the peak 
rocking angle 𝜃  normalized by the stability angle 𝛼 of the block, i.e. 𝜃 = 𝜃 /𝛼 
(Dimitrakopoulos and Paraskeva, 2015). The onset of rocking is signified when 𝜃 first exceeds 
zero, whereas the overturning threshold is typically set to one. The overturning limit of one is 
a nominal threshold, yet accurate enough for the needs of this study and the limitations of the 
adopted analytical model, since in rare but possible cases, a rocking block could exhibit 
rotations higher than its stability angle without overturning. Two dimensionless IMs have been 
adopted, as initially proposed by Dimitrakopoulos and Paraskeva (2015), these being, 
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(a) the dimensionless peak floor acceleration, 𝑃𝐹𝐴/(g ∙ tan𝛼), from this point onwards 
𝐼 = 𝑃𝐹𝐴/gtan𝛼   

(b) the dimensionless peak floor velocity, 𝑝𝑃𝐹𝑉/(g ∙ tan𝛼), from this point onwards 𝐼 =
𝑝𝑃𝐹𝑉/gtan𝛼 

It should be noted here that PFA and PFV exclusively refer to spectral ordinates of the single 
horizontal component of each floor acceleration record pair, this being the one applied to the 
rocking block; essentially, the arbitrary horizontal component of floor motion is employed 
rather than the geometric mean of both components (see Baker and Cornell, 2006). This is 
contrary to Kazantzi et al (2021), who developed expressions both for the arbitrary and the 
geomean component for ground-supported blocks. There are multiple reasons for doing so. 
First of all, the two components of recorded floor motions are often associated with differing 
periods of the supporting building as the two principal axes are rarely of identical dynamic 
characteristics. Perhaps not unrelated to this fact, using the arbitrary component is the 
overwhelming norm for all component response studies (e.g., Filiatrault and Sullivan, 2014; 
Kazantzi et al, 2020), as well. Furthermore, several instrumental recordings lack one of the two 
components, while in others the two components have not been measured at the same location 
on a floor slab. On a different tack, recognizing the uncertainty in the orientation of building 
contents relative to the principal axes of the supporting structure, FEMA P-58 (FEMA, 2012) 
typically employs the so-called “non-directional”, or square-root-sum-of-squares values of PFA 
or PFV, while employing content fragilities based on what is essentially the arbitrary 
component. Following this paradigm, and given the aforementioned constraints, we also chose 
the arbitrary component route.  

 On another note, with the exception of the taller blocks (i.e. those with low p) close to 
overturning, the scaling factors for the majority of the records and blocks were kept below 2, 
limiting any bias due to scaling. Questions may still be raised by the fact that even such scale 
factors may correspond to motions that would otherwise induce nonlinearity in the structural 
system. Nonlinearity essentially modifies the properties of the ground motion filtering medium 
(i.e. the primary structure) through which the ground acceleration signal is transformed to a 
narrowband floor motion. Note that this is an issue regardless of whether one is investigating 
yielding, rocking, sliding, bouncing or any other response type. Herein, some of the utilized 
floor motions were recorded in instrumented buildings that deformed well beyond their elastic 
state, while others correspond to elastic structures. Should then the level of nonlinearity in the 
primary structure be adopted as an additional defining parameter in the proposed fitted 
relationships, or are PFA and PFV sufficient predictors of the rocking response? Actually, the 
lack of adequate number of strong floor motion data combined with the overall large dispersion 
of the rocking response does not allow us to observe any statistical trends worth mentioning. 
Note also that for the considerably better confined (and less dispersed case) of yielding 
response, NIST (2018) chose to discard any such influence in the parametric response of 
oscillators given PFA. In the same spirit, and given the data at hand, we provisionally accept 
sufficiency (see also Luco and Cornell, 2007) of PFA and PFV to predict rocking response, 
confining the influence of any nonlinearity in the supporting structure into the estimated values 
of PFA and PFV, rather than the response given said quantities. 

4 INVESTIGATION ON FLOOR ROCKING RESPONSES 

4.1 Rocking Spectra 

In an analogous manner to spectral acceleration response spectra for elastic oscillators, Makris 
and Konstantinidis (2003) proposed the so-called rocking spectra for rocking blocks. A rocking 
spectrum essentially offers estimates of 𝜃  as a function of the inverse of their characteristic 
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frequency 𝑝 (i.e. the quantity 1/𝑝) for different stability angles, 𝛼. Since this study is focused 
on components located at floor levels other than the ground, Table 1 provides a rough analogy 
of the quantities that appear in the rocking spectra relative to those required for defining 
conventional floor response spectra.  

Table 1. Quantities that define floor response spectra for conventional elastic oscillators versus 
rocking ones. 

Spectral quantity Elastic oscillator Rocking oscillator 

component response peak acceleration  peak rocking angle, 𝜃   

component parameters 
period, Tp 

inverse characteristic 
frequency, 1/𝑝 

damping ratio, βp slenderness/stability angle, 𝛼 

building parameters vibration period(s) 

4.2 Potential of floor rocking spectra in estimating rocking response statistics 

Conventional floor response spectra evaluated for elastic oscillators exhibit large amplifications 
in the evaluated peak component acceleration demands in the region around the predominant 
period of the supporting structure. This narrowband amplification is a consequence of the 
ground motion filtering as the signal travels across the building height. As was showcased at 
least by e.g. Calvi and Sullivan (2014), Wang et al (2014) and Kazantzi et al (2020), for a 
vibrating component located at any floor level, the Peak Component Acceleration could be 
amplified by several orders of magnitude, if the period of the component is close or, even worse, 
tuned to the period of the supporting structure. Hence, due to this substantial amplification 
effect in a narrow spectral region, it was suggested by Kazantzi et al (2020) to perform a 
normalization in the abscissas of the floor response spectra (which depict the period of the 
component 𝑇 ) by the predominant period (fundamental or any dominant higher mode period) 
of the supporting structure (𝑇 ), prior to undertaking any averaging across the spectra to 
estimate component response statistics. This normalization process was demonstrated to be 
essential for maintaining in the median spectrum the peak that appears in the individual spectra 
at 𝑇 /𝑇  =1 (i.e. at tuning); median spectra obtained on the basis of unnormalized spectra 
could substantially underestimate the responses at and around the tuning region.  

 Given that floor rocking spectra may also demonstrate narrow band characteristics, 
normalization of their abscissas could be required prior to undertaking any statistical 
summarization, so as not to underestimate the responses of the rocking blocks that fall within 
these regions. Hence, similarly to what has been proposed in the past for the normalization of 
ordinary floor response spectra (Kazantzi et al, 2020), it was investigated herein whether there 
is a relation between the occurrence of spectral amplification peaks with the period of the 
supporting structure, and consequently whether it is meaningful to normalize the abscissas of 
each spectrum with such a quantity.  

 Figure 2 illustrates the floor rocking spectra that were computed for a range of rigid 
rocking blocks (with the quantity 1/𝑝 ranging from 0s to 2s) and two characteristic stability 
angles 𝛼 (0.10 and 0.15 rad) for the floor acceleration recordings obtained from the 1989 Loma 
Prieta recording in Station 58496 and the 1991 Sierra Madre recording in Station 24385. The 
dashed-dot line in Figure 2 denotes the period of the supporting building, corresponding to the 
station designation where the floor motion history was recorded. Specifically, the rocking 
spectra in Figures 2a and 2b, correspond to a building with a fundamental period of 
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approximately 0.3s and those illustrated in Figures 2c and 2d are related to a building with a 
fundamental period around 0.5s.  

  

  
(a) (b) 

  
(c) (d) 

  
 

Figure 2. Floor rocking spectra for (a-b) building station 58496 and for (c-d) building station 
24385 for blocks with 𝛼 = 0.10 rad (left) and 𝛼 = 0.15 rad (right). 

 As can be inferred from the Figure 2, the peak appearing in the floor rocking spectra, is 
nowhere close to the fundamental period of the supporting structures; similar observations also 
hold for all 105 floor recordings utilized in this study. Clearly, the normalization of the abscissas 
of the rocking spectra by the predominant period of the supporting building 𝑇  is not 
meaningful. Supplementary efforts towards identifying a correlation of the characteristic 
frequency 𝑝 of the rocking blocks with the period of the supporting structure 𝑇 , via utilizing 
different expressions for the latter were also unsuccessful in yielding any consistent trend. 
Figure 3 presents more comprehensive results on two such normalization attempts compared 
against the unnormalized spectra and spectra normalized by 𝑇  for two indicative stability 
angles 𝛼 (0.12 and 0.25 rad). The illustrated rocking spectra refer to eight different floor motion 
recordings obtained in eight different building stations, all scaled properly to the same PFV 
level. This moderate scaling was employed to at least ensure rocking response initiation across 
the considered blocks and floor motions. Apparently, none of the trial normalisation quantities 
of 𝑇 , 𝑇 , or 𝑡 ∙ 𝑇  offered any improvement in the process of identifying any 
consistent interplay between the characteristic frequency 𝑝 of the rocking blocks and the period 
of the supporting structure 𝑇 . The term 𝑡  denotes the uniform duration (Sarma and Casey, 
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1990; Giouvanidis and Dimitrakopoulos, 2018), evaluated as the summation of time intervals 
during which the floor acceleration exceeds the rocking initiation threshold g tan 𝛼. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 

Figure 3. Floor rocking spectra for eight different building stations and 𝛼 = 0.12 rad (left), 𝛼 = 
0.25 rad (right). The 1/p abscissas are shown: (a-b) unnormalized, (c-d) normalized with 𝑇 , 
(e-f) square rooted and normalized with 𝑇 , and (g-h) normalized with 𝑡 ∙ 𝑇 .  
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4.3 Statistical tests on floor versus ground rocking response  

In subsection 4.2 it was shown that there is no apparent relationship between the characteristic 
frequency of a rocking building content with the fundamental period of the supporting structure. 
Hence, a reasonable question to be answered before we proceed with developing a set of 
expressions for rocking contents is whether the response of a rigid rocking block located at a 
floor level other than the ground (i.e. the response that is evaluated when the block is subjected 
to floor accelerations) is different from the response of a ground supported rigid rocking block 
(i.e. the response that is evaluated when the block is subjected to ground accelerations). If not, 
then one could utilize the rocking response prediction equations proposed on the basis of ground 
supported blocks (e.g. Kazantzi et al, 2021) for predicting the rocking responses also at different 
floor levels. To put it differently, the question posed is, whether, even if we were not successful 
in identifying the source of differentiation, floor rocking response still conforms to a different 
distribution than the one characterizing the ground rocking response.   

 To investigate this, two different suites of 105 recordings were employed. The first is 
the set of 105 floor recordings employed in all analyses so far, while the second pertains to the 
105 ordinary (no long duration, no pulse) ground motions (not to be confused with the floor 
recording of the first suite) of Kazantzi et al (2021). From each suite, 105 values of acceleration 
(PFA or PGA) given 𝜃 were determined for a multitude of 𝜃 levels, covering the entire range 
of response from rocking initiation to overturning. In essence, vertical statistics with a median 
point inversion are employed, per Lachanas and Vamvatsikos (2022), in the same approach one 
can use to derive fragilities for exceeding given thresholds of 𝜃. Figure 4 presents the scatter 
plots of the evaluated ground (Figure 4a and 4c) and floor (Figure 4b and 4d) rocking responses 
for two indicative rocking blocks (with 𝑝 equal to 1.0 and 2.5 s-1). Apparently, there are notable 
differences in the evaluated ground and floor responses with reference to blocks with the same 
characteristic frequency whereas the dispersion observed remains nontrivial.  

 Then, the Kolmogorov–Smirnov (Massey, 1951; Miller, 1956) two-sample test (K–S 
test from this point onward) was utilized to compare the PFA versus the PGA sample 
determined for the same value of 𝜃. The K–S test is a distribution-free test, meaning that no 
assumption is required about the distribution of the considered data (Benjamin and Cornell, 
1970). It uses the maximum absolute difference to test the null hypothesis that the two empirical 
cumulative distribution functions determined from the studied samples come from the same 
distribution given a statistical significance level, here chosen to be 5%. As can be inferred by 
inspecting Figure 5, there is insufficient evidence to accept the null hypothesis across the 
majority of 𝜃 responses, with results varying widely between tested blocks. Hence, there is 
evidence to suggest that a new model needs to be developed to capture the response of rocking 
blocks that are located on floor levels other than the ground.   
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(a) 𝑝 = 1.0 s-1 (b) 𝑝 = 1.0 s-1 

(c) 𝑝 = 2.5 s-1 (d) 𝑝 = 2.5 s-1 
 

Figure 4. Scatter plots comparing the evaluated ground (a and c) and floor (b and d) rocking 
responses of two different blocks. 
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(a) 𝑝 = 1 s-1 (b) 𝑝 = 2 s-1 

  
(c) 𝑝 = 2.5 s-1 (d) 𝑝 = 3.5 s-1 

Figure 5. Results of K-S tests on the hypothesis that the underlying PFA|𝜃 distribution is 
identical for ground and floor rocking response for four different blocks.  

5 REGRESSION ANALYSIS ON SEISMIC DEMANDS IMPOSED TO ROCKING 
BUILDING CONTENTS  

Owing to the observations of Section 4, we are proposing a set of equations for estimating the 
seismic demands of rocking building contents. They have been obtained via nonlinear 
regression analysis on IDA results stemming from 105 floor recordings and 41 rigid blocks with 
𝑝 from 1.0 up to 5.0s–1 and coefficient of restitution 𝜂 = 0.92. Assuming a lognormal 
distribution of the rocking response, the proposed equations allow estimating the median and 
dispersion on a normalized 𝐼 − 𝜃 − 𝑝 basis, i.e., considering the absolute peak rocking rotation 
𝜃  normalized by the stability angle 𝛼 of the block, 𝜃 = 𝜃 /𝛼, and two different 
dimensionless IMs, 𝐼  and 𝐼  as defined in Section 3.1. Following the findings of Kazantzi et 
al (2021), a single value of 𝛼 = 0.22 is employed, as the normalization fully removes any 
dependence of the statistics on 𝛼. Otherwise, the proposed equations are deemed to be valid for 
rigid rocking blocks within the investigated period range and having values of 𝜂 not 
substantially different that the one adopted in this study.  

5.1 Median response fitting for PFA 

A two-branch equation is proposed for relating the median dimensionless PFA intensity (𝐼 ) 
with the dimensionless EDP (𝜃). The first part of Equation (6a) corresponds to the rocking 
response domain at and around the rocking initiation. The second part provides the main median 
response estimates for the rocking response up to the occurrence of the first overturning: 
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𝐼 𝜃 =

( )

.
· 𝜃 + 𝐼 , for 0 ≤ 𝜃 < 0.008

𝐴 · 1 − 1 − 𝜃 + 𝐶 , for 0.008 ≤ 𝜃 ≤ 1
     (6a)                                               

where, 𝐼  is estimated by substituting in the second branch of Equation (6a) the value of 𝜃 =
0.008, while A1, B1, C1, and 𝐼  are parameters that can be obtained from Table 2. It should be 
underlined here that the proposed Equation (6a) is fully revertible since it was not obtained by 
means of a strict nonlinear regression process, where the statistical properties of the probability 
distribution are evaluated at once. Instead, the median and the dispersion of the response 
distribution were obtained separately, utilizing a curve fitting procedure. Hence, Equation (6a) 
may be inverted to obtain the median normalized peak rocking angle 𝜃  as a function of 𝐼 :  

𝜃 (𝐼 ) =

0.008 ·
( )

( )
, for 𝐼 ≤ 𝐼 < 𝐼

1 − 1 −
( ) / /

, for 𝐼 ≤ 𝐼 ≤ (𝐴 + 𝐶 )
     (6b)                                               

Table 2. Parameters used with Equations (6a,b) and (7a,b) to define median values when using 
PFA and PFV as the IM. 

 As can be inferred from the plots presented in Figure 6, the proposed equation represents 
a good approximation of the median rocking responses for the considered range of block sizes, 
with its accuracy somewhat degrading for blocks having higher 𝑝 values. Nonetheless, given 
the inherent uncertainty of the problem at hand but also to maintain the practicality and the 
invertibility of the proposed Equation (6a) we refrained from its further refinement. Further to 
the above, one notable observation (more apparent in Figure 6b due to the narrower range of 
the vertical axis compared to that of Figure 6a) is the trend change in the evaluated rocking 
responses that occurs at a 𝑃𝐹𝐴/gtan𝛼 level that is approximately equal to 1.3 (i.e. 30% greater 
compared to the rocking initiation threshold). For the blocks examined in the present study, it 
was revealed that rocking response increases at a higher rate for low floor acceleration demands 
(𝑃𝐹𝐴/gtan𝛼 <1.3) as well as close to overturning. This echoes the observations of 
Dimitrakopoulos and Paraskeva (2015) who identified the same approximate transition 
threshold for rocking blocks subjected to near-field ground motion records. 

 

IM A1 B1 C1 D1 E1 F1 𝐼  or 𝐼  

𝐼  
i. e.  𝑃𝐹𝐴/gtan𝛼  

 
𝐷 · exp(−𝐸 · 𝑝)

+
𝐹

𝑝
 

−0.1942 · 𝑝
+ 1.039 · 𝑝
+ 0.5768 

1.2700
· 𝑝 .  

36.6199 1.8213 3.6009 1.000 

𝐼  
i. e.  𝑝𝑃𝐹𝑉/gtan𝛼 

𝐷 · exp(−𝐸 · 𝑝)

+
𝐹

𝑝
 

−0.1888 · 𝑝
+ 0.8976 · 𝑝
+ 0.7015 

0.1366
· 𝑝 .  

2.1541 1.1144 0.3226 0.1091 · 𝑝 
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(a) (b) 
 

Figure 6. Median seismic demand estimates for rocking building contents with different 
characteristic frequencies 𝑝 over a range of intensity levels, expressed in terms of dimensionless 
PFA, covering the response from rocking initiation up to the first overturning. Fitting is shown 
with the dashed line.   

5.2 Median response fitting for PFV 

In an analogous manner to the process adopted in the case of PFAs, a similar methodology was 
utilized for delivering an equation that relates the median dimensionless PFV intensity measure 
(𝐼 ) with the dimensionless EDP (𝜃). Hence, similarly to Equation (6a), the first part of 
Equation (7a) corresponds to the rocking response domain at and around the rocking initiation 
whereas the second part provides the main median response estimates for the rocking response 
up to the occurrence of the first overturning: 

𝐼 𝜃 =

( )

.
· 𝜃 + 𝐼 , for 0 ≤ 𝜃 < 0.004

𝐴 · 1 − 1 − 𝜃 + 𝐶 , for 0.004 ≤ 𝜃 ≤ 1
     (7a)                                               

where, 𝐼  is estimated by substituting in the second branch of Equation (7a) the value of 𝜃 =
0.004, while A1, B1, C1 and 𝐼  are provided in Table 2. For reasons explained in Section 5.1, 
Equation (7a) may be inverted to obtain the median normalized peak rocking angle 𝜃  as a 
function of 𝐼 :  

𝜃 (𝐼 ) =

0.004 ·
( )

( )
, for 𝐼 ≤ 𝐼 < 𝐼

1 − 1 −
( ) / /

, for 𝐼 ≤ 𝐼 ≤ (𝐴 + 𝐶 )
     (6b)                                               
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(a) (b) 

Figure 7. Median seismic demand estimates for rocking building contents with different 
characteristic frequencies 𝑝 over a range of intensity levels, expressed in terms of dimensionless 
PFV, covering the response from rocking initiation up to the first overturning. Fitting is shown 
with the dashed line.   

5.3 Dispersion fitting for PFA 

To offer a comprehensive probabilistic description for the seismic rocking response of building 
contents, along with the median equations, another set is needed for providing dispersion 
estimates. Hence, similarly to the process adopted for delivering the median fitting, a nonlinear 
regression analysis was undertaken on the standard deviations of the data logarithms, in view 
that the seismic response is sufficiently described by means of a lognormal distribution. As in 
the case of the medians, the curve fitting process resulted in a two-part expression that offers 
dispersion estimates for 𝐼  as a function of 𝑝: 

𝛽 𝜃 =

· .

 
−

·

 ·
, for 𝜃 ≤ 0.7

𝛽 𝜃 = 0.7 ,          elsewhere 
                                                      (8)                                               

(a) (b) 
 

Figure 8. PFA dispersion estimates for rocking building contents with different characteristic 
frequencies 𝑝 over a range of imposed demands, from rocking initiation up to the first 
overturning. Fitting is shown with the dashed line.   
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 As can be inferred by inspecting both Equation (8) and Figure 8, at the initiation of 
rocking the dispersion is zero, since the initiation of rocking occurs at 𝐼 = 1 irrespectively of 
the block characteristic frequency. Hence, at low seismic demands, i.e. at and around the 
rocking initiation, the normalized PFA is a very efficient IM, i.e. one that possesses a high 
correlation with the rocking response. Nevertheless, its efficiency decreases rapidly for 𝜃 values 
that are higher than 0.3, or even 0.2; for the largest blocks considered in this study (Figure 8a) 
it stabilizes at fairly large dispersions when 𝜃 reaches 0.7, with the maximum reported value 
being around 0.9 for the block with 𝑝 = 1𝑠 . These observations essentially render  𝐼  a rather 
inefficient IM for large blocks when considering high responses that could induce severe 
damage to these components. For smaller components (i.e. 𝑝 > 2.5𝑠 , see Figure 8b), which 
are of more practical interest to the majority of building contents, the dispersions take more 
reasonable values, of the order of 0.1 to 0.5. 

Table 3. Parameters used with Equations (8) and (9) to define dispersion values when using 
PFA and PFV as the IM. 

 
 
5.4 Dispersion fitting for PFV 

Similarly to the previous subsection, the nonlinear regression analysis on the dispersion 
estimates for PFV used as an IM yield the following two-part expression that offers dispersion 
estimates for 𝐼  as a function of 𝑝: 

𝛽 𝜃 =

· .

 
−

·

·
+ 0.2853, for 𝜃 ≤ 0.6

𝛽 𝜃 = 0.6 , elsewhere 
                                                    (9)                                               

 

(a) (b) 
 

Figure 9. PFV dispersion estimates for rocking building contents with different characteristic 
frequencies 𝑝 over a range of imposed demands, from rocking initiation up to the first 
overturning. Fitting is shown with the dashed line.   
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2.1991 · 𝑝 .  10.9120 · 𝑒 . ·  38.6370 · 𝑝 .  

𝐼  
i. e.  𝑝𝑃𝐹𝑉/gtan𝛼 

−0.0396 · 𝑝 + 0.4827 · 𝑝 − 1.9095 · 𝑝 + 2.4904 663.2170 · 𝑝 .  48.8860 · 𝑝 .  



16 

 By inspecting Figure 9, 𝐼  is a more efficient IM compared to 𝐼  for most of the range 
of response and most of the blocks. The only exceptions are the neighborhood of initial rocking 
uplift (i.e., 𝜃 ≤ 0.2) and the smaller components (i.e. 𝑝 > 3.5𝑠 , see Figure 9b), where 𝐼  
performs better. These two observations are actually well correlated, as the smaller blocks are 
also less stable (e.g., Makris and Kampas, 2016), rapidly reaching overturning at intensities 
close to the initiation of rocking uplift. The aforementioned findings are believed to hold at 
least for the size range of the floor contents that was considered in this study, as far as those are 
consistently exhibiting pure rocking behavior during the seismic excitation. 

6 CASE STUDY 

As an example, the equations presented in Section 5 are applied to two arbitrary components, 
namely A and B (see Table 4), to evaluate their fragility. Three sequential limit states are 
employed, defined via two deterministic thresholds for the normalized peak rocking angle 𝜃 
(i.e. 0.15 and 0.35), to roughly depict damage initiation and moderate damage for a typical 
component, whereas a third threshold of 1.0 is associated with nominal overturning. It should 
be noted that the nature of the component (e.g. rugged electronic equipment versus fragile 
museum artefact) essentially defines these thresholds; the values adopted are only indicative. 

Table 4. Geometric properties of the considered case-study rocking components. 

 

 
 

 The component fragilities were evaluated on the basis of a lognormal distribution 
assumption for the fragility (Bakalis and Vamvatsikos, 2018) as, 

𝑃(𝐷𝑒𝑚𝑎𝑛𝑑 > 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦|𝐼) = 𝛷
( )  ( )

                            (10) 

 
where I is the dimensionless IM (i.e. IΑ or IV), I50 its median computed using either Equation 
(6a) or (7a), and β its dispersion (i.e. βΑ or βV) evaluated utilizing Equation (8) or (9). The 
median and the dispersion of the component fragilities, considering both dimensionless IMs, 
components A-B, and the three limit states, are summarized in Table 5.  

Figure 10 illustrates the corresponding fragility curves for IA (Figure 10a,c) and IV 
(Figure 10b,d). The essential determinism of rocking initiation at IΑ = 1 is slightly violated, as 
the lognormal distribution model predicts low, but still non-zero rocking response even for 
PFAs below the rocking initiation threshold of IΑ < 1. Subsequently, it is no wonder that the 
order of the fragilities is scrambled in that problematic region, as more severe damage states 
may appear to be more probable than milder ones at given IMs in this region.  This can be 
partially attributed to the low efficiency of PFA, which manifests itself by high dispersion 
values as the rocking response deviates from the rocking initiation region. Due to this effect, 
the approximation of the fragility with a two-parameter lognormal distribution, which is further 
always bounded to the origin regardless of the response level, could have an adverse impact on 
the computed probabilities in the neighborhood of initial uplift. In case of a risk assessment, the 
aforementioned limitation of the two-parameter lognormal distribution could have a substantial 
impact on the evaluated annual exceedance probability. Different distributions may be 
considered to improve the probabilistic quantification, e.g. by utilizing a shifted three-
parameter lognormal distribution (e.g. Stoica et al, 2007). An even simpler approach is to cut-
off the left tail of the lognormal fragility (e.g. Lachanas et al, 2022b), zeroing it out for IΑ < 1. 
Nevertheless, it is out of the scope of this study to further elaborate on this issue. It should be 
noted that the fragilities evaluated utilizing IV as an IM do not appear to have such issues. This 

Component 2h 2b R p 𝛼 

Component A 2.307 0.468 1.177 2.5 0.20 

Component B 1.164 0.297 0.601 3.5 0.25 



17 

is due to the fact that the dispersions at higher response levels are low, while PFV is not as 
efficient for rocking initiation, leaving some non-zero dispersion in that neighborhood to allow 
for better lognormal fitting.  

 

(a) (b) 

(c) (d) 
 

Figure 10. Median fragility curves computed for three sequential damage states using the 
proposed equations (see Table 5) for Component A (a-b) and Component B (c-d) expressed in 
terms of the normalized PFAs (a and c) and PFVs (b and d). 

Table 5. PFA and PFV fragility estimates for the three considered limit states 
Component 𝜃 =  0.15 𝜃 =  0.35 𝜃 =  1.00 

  𝐼 (a) 𝛽 (b) 𝐼  𝛽  𝐼  𝛽  

Component A 1.29  0.16  1.60  0.38  2.16  0.51  
Component B 1.21  0.08  1.34 0.16  1.53  0.31  

  𝐼 (c) 𝛽 (d) 𝐼  𝛽  𝐼  𝛽  

Component A 0.36  0.22  0.45  0.22  0.58  0.28  
Component B 0.47  0.25  0.52 0.20  0.58  0.20  

(a) Equation (6a), (b) Equation (8) 
(c) Equation (7a), (d)  Equation (9) 

 

 In subsection 4.3 it was showcased that the ground and floor rocking responses come 
from different distributions. To further expand on this finding and demonstrate the error that 
could be induced in a risk assessment if one ignores this observation, it was also checked, for a 
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sample rocking block (Component A), whether utilizing the proposed equations obtained on 
the basis of floor acceleration histories yields substantially different fragility estimates for the 
building contents than those computed by means of similar equations obtained for the ground. 
To accomplish this comparison, an additional set of fragilities for the same three damage states 
presented in Figure 10 and considering the properties of Component A, were evaluated utilizing 
the PGA regression equations proposed for ground-supported rocking components by Kazantzi 
et al (2021). Having the two fragilities sets at hand, it was also assumed that the considered 
component may be located at two different buildings, having fundamental periods of 0.5s and 
2.0s, respectively, and subjected to a PGA = 0.2g. In the absence of more elaborate data, one 
may evaluate the resulting floor accelerations by means of the following PFA/PGA relationship 
suggested by NIST (2018),  

= 1 + 𝑎 · + 𝑎 ·                                                                                         (11) 

where, 

𝑎 =  ≤ 2.5           (12) 

𝑎 = 1 −
.

> 0                                                                                                          (13) 

Tblg is the period of the supporting building that is suggested to be evaluated per ASCE/SEI 7-
16; z is the vertical location of the component measured from the ground and H is the building 
height.  
 For the two considered buildings and four different elevations of z/H = 0.25, 0.50, 0.75 
and 1, Equation (11) yields the PFA estimates presented in the second column of Table 6. As 
can be inferred from the tabulated values, for the same level of floor acceleration, utilizing the 
ground-based relationships yields lower exceedance probability estimates for all combinations 
of blocks, buildings and limit states. This further supports a recent finding by D’Angela et al 
(2021) suggesting that floor motions are in general more severe than ground motions. Also, by 
inspecting the fragility curves presented in Figure 11 it is further verified that the floor-
acceleration-based fragilities and the ground-acceleration-based fragilities indicate two 
different distributions of rocking response by having different medians and dispersions.  

Now the question turns to whether this difference is justifiable at all floors within the 
building. First, it should be pointed out that the 105 floor acceleration recordings were mainly 
obtained from the top of the building. Hence, they are certainty representative of floor motion 
at the upper floors, yet some doubts may be raised as to whether they offer accurate 
representation for lower floors. In general, it is well known that the upper floor response is 
better tuned to the fundamental period of the structure, while lower ones often show more 
influence by higher modes. When developing predictive relationships for simple oscillators 
(e.g., Kazantzi et al, 2020), it is the normalization by a characteristic supporting-structure period 
that allows one to claim wider legitimacy of the fitted expressions. Herein, where no such 
normalization could be found, how is one to still claim validity of Equations (6)–(9) for floors 
that were not investigated? There are two answers to this. First, the lack of any dependence on 
a particular modal period offers at least some evidence to support that the specifics of the 
narrowband content of floor motion are not as important for rocking systems. Second, even if 
some dependence cannot be ruled out, the PFA-based fragility estimates will at worst offer a 
conservative estimation even for the lowest of floors. This is in line with the typical practice of 
designing components for the worst PFA to be encountered in the structure, i.e., which for the 
majority of the buildings occurs at or close to the roof. On the other hand, using the PGA-based 
fragilities (essentially assuming the supporting structure is rigid) will surely result to 
underestimation of damage and loss, especially for building contents located at the top of 
building.  
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Table 6. Exceedance probability estimates for the three considered limit states obtained for 
Component A located in buildings with fundamental periods of 0.5s and 2.0s. The values shown 
in roman font are derived from Equations (6a) and (8), while those in bold are based on PGA-
based regression equations of Kazantzi et al (2021).  

         Tblg = 0.50 s 𝑃 𝜃 > 𝜃 𝑃𝐹𝐴] 

z/h PFA (g) 𝜃 =  0.15 𝜃 =  0.35 𝜃 =  1.00 

0.25 0.30 0.81 0.45 0.42 0.28 0.23 0.17 

0.50 0.40 1.00 0.81 0.71 0.52 0.43 0.33 
0.75 0.50 1.00 0.95 0.88 0.71 0.61 0.49 
1.00 0.67 1.00 1.00 0.97 0.88 0.80 0.68 

         Tblg = 2.00 s 𝑃 𝜃 > 𝜃 𝑃𝐹𝐴] 

z/h PFA (g) 𝜃 =  0.15 𝜃 =  0.35 𝜃 =  1.00 

0.25 0.22 0.18 0.13 0.17 0.12 0.10 0.07 

0.50 0.25 0.39 0.22 0.25 0.17 0.14 0.10 
0.75 0.28 0.72 0.38 0.37 0.25 0.20 0.15 
1.00 0.49 1.00 0.94 0.86 0.69 0.59 0.47 

 

(a) (b) 

(c) (d) 
Figure 11. Median fragility curves computed in three sequential damage states using the PFA-
based equations (i.e., incorporating the influence of supporting structure flexibility) and the 
PGA-based equations (i.e., assuming a rigid supporting structure) for Component A located in 
two supporting buildings with periods (a-b) Tblg = 0.5s and (c-d) Tblg = 2.0s.  

P
[D

em
an

d
>

C
ap

ac
ity

|P
FA

]

P
[D

em
an

d
>

C
ap

ac
ity

|P
G

A
]

P
[D

em
an

d>
C

ap
ac

ity
|P

FA
]



20 

CONCLUSIONS 

The present study offers a practical method for determining the response statistics for a 
spectrum of rocking block sizes, through a set of equations obtained via nonlinear regression 
on their analytically computed seismic responses. The method employs analytically derived 
rocking response data having subjected several rocking block models to multiple floor 
recordings. The latter are actual floor acceleration histories that were obtained from 
instrumented buildings in California during real earthquakes. The floor recordings were 
incrementally scaled so as to expose the entire response performance of a rocking block that 
essentially spans across rocking initiation and block overturning. The resulting normalized 𝐼 −
𝜃 − 𝑝 expressions offer a practical design and assessment tool that can be utilized for delivering 
more stable free-standing nonstructural building contents and consequently minimizing the 
pertinent seismic losses. Finally, the analyses also revealed that 𝐼  is a more efficient intensity 
measure than 𝐼  away from the rocking initiation region and for the majority of the block sizes. 
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