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A B S T R A C T

The deterioration of Cultural Heritage assets caused by the natural hazards is a pressing issue in many countries.
Therefore, reliable models based on the large-scale structural response of the assets is key to assess their
resilience. However, reliable models such as large and detailed Finite Element (FE) models, require a large
number of data and input parameters. This paper proposes a Bayesian learning approach to identify the main
parameters of a FE model with quantified uncertainty based on ambient vibration data. As a novelty when
compared with other Bayesian structural parameter identification methods from ambient vibration data, here
the likelihood function is formulated in a principled way considering information from both frequencies and
modes using a probabilistic version of the Modal Assurance Criterion for the modes. This method is embedded
into a parameterised computational model to automate the simulation process, and a real case study for a
sixteenth century heritage building in Granada (Spain) is presented. The results show the suitability and
effectiveness of the proposed Bayesian approach in identifying the most plausible values of the uncertain
model parameters in a rigorous probabilistic way, but also in obtaining the modelled frequencies and the
modal assurance criterion values with quantified uncertainty.
. Introduction

The fire at the Notre-Dame Cathedral in 2019 brought to light
he importance of cultural heritage preservation. A prospective re-
ilience assessment of such cultural heritage (CH) sites and buildings
s the foundation upon which an efficient knowledge-based preserva-
ion will be based. In particular, structural integrity against natural
azards, such as climate-related loads (snow, wind, etc.), geo-hazards
e.g., earthquakes) and man-made hazards (e.g., fires), play a critical
ole in the overall CH asset resilience assessment. Analysing the effects
f such hazards on a building with the precision required means
hat reliable models of the building are needed. These reliable models
re based on information from the structure response coming from
easured data, process known as the inverse problem [1]. One of the
ost commonly encountered inverse problems in structural engineering

s the identification of uncertain model parameters (e.g., the effective
tiffness) based on information from the vibration signature of the
tructure. Most of the authors propose deterministic approaches for the

∗ Corresponding author.
E-mail address: mljalon@ugr.es (M.L. Jalón).

inverse problem of model parameter identification using experimental
modal data from Ambient Vibration Tests (AVTs). Examples can be
found in [2] in application to the Cathedral of Santiago (Chile), in
[3–6] applied to several historical Italian palaces and towers, or in [7]
in application to various Iranian mosques. However, deterministic in-
verse problem approaches do not account for the uncertainty coming
from measurement errors and, above all, from the fact that the model
itself is a idealisation of reality and has a limited correspondence with
reality. Consequently, probabilistic instead of deterministic approaches
for the inverse problem are preferred to deal with these sources of
epistemic uncertainty. In this context, the Bayesian inverse problem
methodology [8,9] provides a rigorous yet efficient framework for
model parameter identification (updating) while accounting for the
associated uncertainties.

The Bayesian inverse problem of parameter identification based on
experimental modal data from ambient vibration tests is widely known
and it has been shown to be efficient when applied to linear structures,
bridges or buildings. For example, Cheung and Bansal [10] proposed a
141-0296/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).
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new algorithm for Bayesian system identification of a linear structural
model based on incomplete modal data, considering the modal shapes
as uncertain variables. Jang and Smyth [11] developed a Bayesian
model updating framework for a full-scale bridge FE model, using
the natural frequencies and the mode shapes residual vectors in the
error function of the likelihood function. Chiara et al. [12] proposed a
Bayesian model parameter identification framework for a curved cable-
stayed footbridge using the natural frequencies as reference data for
the model updating, whereas the modal shapes were considered as
constraints in the computation of the likelihood function to ensure
mode shape matching.

In application to building structures, Lam et al. [13] proposed an
enhanced simulation algorithm for the Bayesian model updating of a
coupled-slab system using measured modal data. Ierimonti et al. [14]
investigated the calibration of a base-isolated building FE model using
natural frequencies and continuous monitoring through a continuous
Bayesian model updating. Akhlaghi et al. [15] identified surface dam-
age in a building proposing a Bayesian inference process to combine
natural frequencies and point cloud data. Liu et al. [16] proposed a
Bayesian model updating method using subset simulation optimisation
given ambient vibration data to improve the sampling efficiency, and
applied such a methodology in a full-scale high-rise structure.

In the context of historical masonry buildings, a few authors have
investigated the suitability of the Bayesian framework to update the
relevant mechanical and structural parameters of this type of structures.
For example, Atamturktur et al. [17], applied the Bayesian method-
ology to update FE models of masonry choir vaults. More recently,
Monchetti et al. [18] have carried out a Bayesian updating of the FE
model parameters of a masonry tower. Both research works do not
consider the mode shapes in the model updating procedure, using the
natural frequencies as the only system output, thus neglecting a useful
piece of information which is available in the data. Besides, to the best
of the authors’ knowledge, the suitability of the Bayesian methodology
has not been explored so far in application to a complete CH stone
masonry building. These are distributed mass structures full of complex
structural elements such as buttresses, domes, and towers. There were
built of natural materials such as stone, rammed earth, wood, among
others, whose structural properties are uncertain. Quantifying such
uncertainty in the specific case of degraded historical buildings is
key for rigorous and complete structural parameter identification; this
is precisely the context where the full potential of the probabilistic
Bayesian approach for parameter identification can be fully exploited.

In this paper, a rational methodology for structural parameter iden-
tification of CH buildings based on the Bayesian learning approach is
presented. First, experimental data about modal parameters (natural
frequencies and mode shapes) from Ambient Vibration Tests (AVTs) are
collected, which have been obtained using Operational Modal Analysis
(OMA) algorithms. Next, a complete building model is developed using
geometrical 3D data coming from a 3D laser scanner, which is used
to develop a simplified but reliable structural FE model of the entire
building. Several structural parameters of the FE model are uncertain,
so a Bayesian inverse problem using modal data (both frequencies and
modes) is finally adopted to infer the most plausible values of these
parameters.

As a novelty when compared with other Bayesian structural pa-
rameter identification approaches from AVTs data, here the likelihood
unction is formulated in a principled way considering information
rom both frequencies and mode shapes, using a probabilistic version
f the Modal Assurance Criterion (MAC) for the mode shapes. By
eans of this, and in contrast to other existing methods, the proposed

pproach does not require the matching of measured modes with the
orresponding modes from the FE model, which greatly simplifies the
dentification procedure. The proposed methodology is generic but here
t has been specialised using a real case study for a sixteenth century
H building in Granada (Spain). The results show the efficiency of the
2

roposed methodology in identifying the most plausible values of the
main mechanical and material parameters of the building based on
modal data in a rigorous probabilistic way.

The remainder of the paper is organised as follows: Section 2
describes the geometry of the CH building proposed. Section 3 de-
scribes the methodology used to update structural FE models of CH
buildings. In Section 4, the proposed methodology is illustrated and
tested for the San Jerónimo Monastery. Section 5 discusses the main
results and lessons learned. Section 6 provides the conclusions and
future works that can be derived from this research.

2. Geometrical description of the CH asset

The San Jerónimo Monastery in Granada (Spain) is a sixteenth
century CH building located in the city centre. The CH building was
built in the Renaissance architectural style, and it has two excellent
cloisters as well as the church and the bell tower (Fig. 1(a)). The main
cloister is a large square enclosing a central garden of orange trees, and
it is surrounded by two floors of side galleries, each with nine arches.
The church, has a latin cross plan with an spectacular elevated choir
at its entrance of the church and an extraordinary altarpiece behind a
wide staircase, whose floor dimension is 57 × 24 m, and the height
of the central nave is 30 m and the dome is 35 m high. The bell
tower is located on the main facade with 46 m of height (Fig. 1(b)).
The monastery was plundered during 19th century and was converted
into cavalry barracks, which almost led to the ruin of the architectural
complex. The State undertook a complete restoration of the building
in 1916–1920, and there have been other small-scale restoration works
since then.

The structural system consists of stone masonry walls (walled-
structure) with exterior buttresses. The main construction material is
limestone, quarried in the Santa Pudia area (15 km from Granada)
which was commonly used in the CH buildings of the city as a con-
struction material (for example: the Cathedral, the Palace of Carlos
V, the Royal Hospital, or the Green Bridge). Santa Pudia limestone
is quite porous and highly susceptible to traffic pollution and severe
climates, such as that of Granada, which is characterised by major daily
and seasonal thermal oscillations, with very low minimum and very
high maximum temperatures in the winter and in the summer, respec-
tively [19,20]. However, other construction materials also appear in
the building. Concrete appears on the top two floors of the bell tower
as this was used during its reconstruction, wooden trusses also appear
as part of the roof structure, and handmade bricks [21–23] are used in
the cannon vault.

In order to model all the structural and non-structural details of
the monastery, a 3D RIEGL LMS-Z420i [24] laser scanner is used
as a novel non-destructive technology for deriving the point clouds
for the interior and the exterior of the monastery. The point clouds
obtained from different scans are processed and synchronised using
RISCAN PRO software. After the synchronisation and combination of
point clouds, the 3D model of the structure is constructed using the
Agisoft Metashape [25] software package. The resulting geometrical 3D
data for the exterior of the monastery, the church and the roof support
are presented in Fig. 2.

3. Bayesian inverse problem

3.1. Forward problem: FE modelling

The geometrical 3D data obtained from the point cloud explained
in Section 2 are used to develop a structural FE model of the building
using ANSYS. The model is conceived in a way that is computationally
affordable in the context of a probabilistic inverse problem, where thou-
sands of forward model simulations are needed, but it is also reliable
enough to capture the main modal response of the building. This simpli-

fied FE model is based on the 3D macro-modelling technique, which has
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Fig. 1. Views of San Jerónimo Monastery. (a) Plan view, (b) Elevation view of the north facade.
been shown to be efficient when applied to masonry constructions [26–
29]. In this sense, the material components modelled (bricks, stone, and
concrete and their contact interfaces) are considered as homogeneous
and isotropic materials.

Shell-type elements (SHELL181) are used with six degrees of free-
dom at each node, considering both bending and membrane stiff-
ness, with just one element through thickness to avoid unnecessary
model complexity. The main cloister is adjacent to the church (see
Fig. 1(a)) and this boundary condition is modelled by vertical walls
using SHELL181 elements. In addition, the inner arcade of the church,
on which the canon vault rests lengthwise, has been modelled as a solid
wall, and this process also uses SHELL181.

In order to consider the influence of foundation soil stiffness in the
modal response of the building, the Winkler elastic foundation theory
is adopted [30]. The soil–structure interaction is idealised with a set
of springs with no interaction between them, and a linear stress–strain
behaviour is assumed leading to simple simulations. This spring model
only needs the modulus of sub-grade reaction as parameter to represent
the soil, so nonlinearities are neglected. Springs are represented by
3

COMBIN14 elements in the foundation level of the FE model. The COM-
BIN14 elements are 3-D uniaxial longitudinal spring–dampers with no
mass, widely used in the soil–structure model interaction [31]. These
elements have damping capabilities, however only the longitudinal
spring constant is considered in this study.

In regards to the mesh size, it is appropriately tuned after a mesh
convergence study (not shown here for the sake of conciseness) in
such a way that the FE model outputs become independent of the
mesh size. Specifically, 1.25 m2 and 1 m are used in this research
as the average surface of the SHELL181 elements and the average
length of the COMBIN14 elements, respectively. Fig. 3 illustrates the
structural FE model of the CH building with indication of the boundary
conditions.

Finally, the described FE model is parameterised considering several
mechanical and material parameters as uncertain input model param-
eters such as the bulk modulus of the main construction material (𝐸),
the bulk modulus of the main cloister walls (𝐸𝑐), the bulk modulus of
the inner arcade of the church (𝐸𝑎), and the stiffness of the soil (𝑘).
Such parameters were revealed as ‘sensitive’ after a Global Sensitivity
Analysis of the FE model [32].
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Fig. 2. Geometrical 3D data: (a) image of the exterior, (b) point cloud of the exterior, (c) image of the interior, (d) point cloud of the interior, (e) image of the roof’s support
(f) point cloud of roof’s support, (g) image of altar piece, (h) point cloud of the altar piece.
3.2. Bayesian model parameter identification

The FE model proposed in Section 3.1 is based on a set of modelling
assumptions and simplifications to decrease computational complex-
ity. Estimating a deterministic single value for the unknown model
parameters using such a model has limited meaning if the model
itself is considered as an idealisation of reality, and furthermore, if
the numerical and measurement errors exist. In order to provide a
reliable estimation, probabilistic instead of deterministic values for
4

model parameters should be provided, which give information about
the degree of belief of the estimated model parameters that provide
the (noisy) observations of the system response. The Bayesian inverse
problem is a principled and rigorous way to tackle such sources of
uncertainty in the parameter estimation [9].

Within the Bayesian Inverse Problem (BIP) [9], the interest is to
obtain the posterior plausibility of the values of uncertain parameters
𝜽 = {𝜃1, 𝜃2,… , 𝜃𝑛} given the measured system response, , for a specific
model class, , that idealises the physical system. This is represented
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Fig. 3. Structural FE model of San Jerónimo Monastery (Granada, Spain): (a) mesh details, (b) boundary conditions details.
by PDF 𝑝(𝜽|,), which is obtained using Bayes’ theorem as follows:

𝑝(𝜽|,) = 𝑐−1𝑝(|𝜽,)𝑝(𝜽|) (1)

with 𝑐 as a normalising constant so that 𝑝(𝜽|,) represents a valid
PDF, i.e., ∫ 𝑝(𝜽|,) = 1. Note that Bayes’ theorem takes the initial
degree of belief of model parameters 𝜽 for the given model, , which
is expressed by the prior PDF 𝑝(𝜽|), and updates this plausibility
to obtain the posterior degree of belief of the parameters by using
information from the system response (both model and data) expressed
through PDF 𝑝(|𝜽,), known as the likelihood function. The likelihood
function provides a measurement about how likely observed data  are
reproduced by a model specified by 𝜽 if model class  is adopted. Note
that there is not any invocation of randomness in Eq. (1). Rather, the
probability is interpreted here as a multi-valued logic that expresses the
relative plausibility of the values of the model parameters conditioned
to a given model specified by . This interpretation of probability
is not well known in engineering, where there is a widespread belief
that probability only applies to aleatory uncertainty (i.e., inherent
randomness) and not to epistemic uncertainty (degree of belief).

3.2.1. Description of the prior plausibility of model parameters
The prior PDF of model parameters 𝑝(𝜽|) is defined as the un-

conditional product of the individual parameters, i.e., 𝑝(𝜽|) =
∏

𝑖
𝑝(𝜃𝑖|). Note that this is not an assertion that no correlations actu-
ally exist in model parameters, it is only a description of our prior
knowledge about such correlations. If they existed, they would become
apparent after Bayesian updating and therefore, they would be con-
sidered in the forward model simulations. The Principle of Maximum
Information Entropy (PMIE) [33] is conservatively adopted to assign a
probability model for individual model parameters 𝑝(𝜃𝑖|) so that it
produces the largest uncertainty (largest Shannon entropy). According
to PMIE, the maximum-entropy model for an unrestricted parameter
with a known mean of 𝜇𝜃𝑖 and a variance of 𝜎𝜃𝑖 is the Gaussian PDF,
i.e., 𝑝(𝜃𝑖|) =  (𝜇𝜃𝑖 , 𝜎𝜃𝑖 ); for an interval bounded parameter 𝜃𝑗 ∈ [𝑎, 𝑏],
the maximum-entropy model is the uniform distribution 𝑝(𝜃𝑗 |) =
 (𝑎, 𝑏). Depending on our prior knowledge about the individual model
parameters, either uniform or Gaussian probability models can be
adopted as appropriate. Further information about the prior probability
models adopted for model parameters is provided in Section 4.

3.2.2. Likelihood function definition
As stated earlier, the likelihood function is obtained as the plausi-

bility of data  being reproduced by model  specified by 𝜽. In this
study, the data corresponds to the frequencies measured {𝑓 , 𝑓 ,… , 𝑓 }
5

1 2 𝑁
and modes {𝜙̂1, 𝜙̂2,… , 𝜙̂𝑁} of the building, i.e.,  = {𝐲̂1, 𝐲̂2,… , 𝐲̂𝑁},
with 𝐲̂𝑖 =

(

𝑓𝑖, 𝜙̂𝑖
)

. Therefore, 𝑝(|𝜽,) =
∏𝑁

𝑖 𝑝(𝐲̂𝑖|𝜽,) with
𝑝(𝐲̂𝑖|𝜽,) ≡ 𝑝(𝐠𝑖(𝜽) = 𝐲̂𝑖|𝜽,). Assuming stochastic independence be-
tween the likelihood of frequencies and modes, 𝑝(𝐲̂𝑖|𝜽,) for the 𝑖th
vibration mode can be formulated as the unconditional product of
probabilities 𝑝(𝑓𝑖|𝜽,) and 𝑝(𝜙̂𝑖|𝜽,), as

𝑝(𝐲̂𝑖|𝜽,) = 𝑝(𝑓𝑖|𝜽,)𝑝(𝜙̂𝑖|𝜽,) (2)

It should be highlighted that the stochastic independence shown in
Eq. (2) refers to information independence and should not be confused
with causal independence. It is equivalent to asserting that if our infor-
mation about frequencies is ‘good’ (e.g., large likelihood 𝑝(𝑓𝑖|𝜽,)),
this does not necessarily means that the information about modes must
be equally good.

In Eq. (2), the frequency component 𝑝(𝑓𝑖|𝜽,) can be obtained by
defining a discrepancy function between the measured and modelled
frequencies as 𝐽𝑓 (𝜽) = 𝑓𝑖 − 𝑓𝑖(𝜽), and 𝑓𝑖(𝜽) is the 𝑖th frequency that
is reproduced by the FE model specified by 𝜽. Since 𝜽 are uncertain
variables, so is 𝐽 (𝜽); according to PMIE, 𝐽 (𝜽) can be conservatively
assumed to follow a Gaussian white noise (zero-mean) process for
different 𝜽 values, i.e., 𝐽 (𝜽) ∼  (0, 𝜎𝑓 ), therefore,

𝐽𝑓 (𝜽) = 𝑓𝑖 − 𝑓𝑖(𝜽) ∼  (0, 𝜎𝑓 ) ⟹ 𝑓𝑖 ∼  (𝑓𝑖(𝜽), 𝜎𝑓 ) (3)

Therefore,

𝑝
(

𝑓𝑖|𝜽,
)

=
(

2𝜋𝜎2𝑓
)− 1

2 exp
⎛

⎜

⎜

⎝

−1
2

(

𝑓𝑖 − 𝑓𝑖(𝜽)
𝜎𝑓

)2
⎞

⎟

⎟

⎠

(4)

Similarly, the same reasoning can be adopted to get the likelihood
of mode component 𝑝

(

𝜙̂𝑖|𝜽,
)

, but this would lead to the well-
known ’mode matching problem’ [34]. In order to avoid this, a novel
discrepancy function is proposed that makes use of the well-known
MAC criterion [35], as 𝐽𝜙(𝜽) = 1 − MAC𝑖(𝜽) ∈ [0, 1], with MAC𝑖(𝜽) as

MAC𝑖(𝜽) =
|⟨𝜙̂𝑖, 𝜙𝑖(𝜽)⟩|

‖𝜙̂𝑖‖
2
‖𝜙𝑖(𝜽)‖2

(5)

where ⟨⋅, ⋅⟩ is the Euclidean inner product between the two vectors and
‖ ⋅ ‖ is the Euclidean norm. Since 𝜽 is uncertain, 𝐽𝜙 is a non-negative
uncertain value and the maximum entropy distribution for a non-
negative unbounded variable is the log-normal distribution, therefore

𝑝(𝜙̂𝑖|𝜽,) =
(

2𝜋𝑠2
)− 1

2 𝐽𝜙(𝜽)−1exp

(

− 1
2

(

log
𝐽𝜙(𝜽)

)2)

(6)

2𝑠 𝑥0
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with 𝑥0 and 𝑠 as the log-normal scale and dispersion parameters, respec-
ively. The last equation can be used to compute the likelihood function
sing Eq. (2), however a simplified version could be easily obtained
y assuming moderately high values for the dispersion parameter 𝑠

and 𝑥0 ≈ 1, leading to a close to zero value for the argument of the
exponential function in Eq. (6), and therefore

𝑝(𝜙̂𝑖|𝜽,) ≈
(

2𝜋𝑠2
)− 1

2 1
1 − MAC𝑖(𝜽)

(7)

After some pilot runs, the influence of the dispersion parameter 𝑠 on
he model updating results was revealed as negligible, thus it can be
ssumed as constant. Therefore, 𝑝(𝜙̂𝑖|𝜽,) ∝ (1 − MAC𝑖(𝜽))−1, and,
ccording to the Metropolis–Hastings algorithm adopted in this work
refer to Section 3.2.3), there is no need to fix such a constant since it
anishes in Eq. (8).

.2.3. BIP solution by using stochastic simulation
The Metropolis–Hastings (M–H) algorithm [36,37] is adopted as a

tochastic simulation to obtain the posterior distribution, 𝑝(𝜽|,)
Eq. (1)). This algorithm is versatile and easy to implement and gener-
tes samples from a specially constructed Markov chain whose station-
ry distribution is the posterior PDF 𝑝(𝜽|,). By sampling a candidate
arameter 𝜃𝜃𝜃′ from a proposal distribution 𝑞(𝜃𝜃𝜃′|𝜃𝜃𝜃𝜁 ), the M–H obtains the

state of the chain at 𝜁+1, given the state at 𝜁 , specified by 𝜃𝜃𝜃𝜁 . Candidate
parameter 𝜃𝜃𝜃′ is accepted (i.e., 𝜃𝜃𝜃𝜁+1 = 𝜃𝜃𝜃′) with probability min{1, 𝑟},
and rejected (i.e., 𝜃𝜃𝜃𝜁+1 = 𝜃𝜃𝜃𝜁 ) with the remaining probability 1 −
min{1, 𝑟}, where:

𝑟 =
𝑝(|𝜃𝜃𝜃′,)𝑝(𝜃𝜃𝜃′|)𝑞(𝜃𝜃𝜃𝜁 |𝜃𝜃𝜃′)
𝑝(|𝜃𝜃𝜃𝜁 ,)𝑝(𝜃𝜃𝜃𝜁 |)𝑞(𝜃𝜃𝜃′|𝜃𝜃𝜃𝜁 )

(8)

The process is repeated until 𝑁𝑠 samples have been generated so that
the monitored acceptance rate (ratio between accepted M–H samples
over the total amount of samples) reaches asymptotic behaviour. Dur-
ing such updating process, no manual intervention nor pre-calibration
of parameters is needed. A pseudo-code description of this method is
provided below as Algorithm 1.

Algorithm 1: M–H algorithm
1 Initialize 𝜃𝜃𝜃𝜁=0 by sampling from the prior PDF: 𝜃𝜃𝜃0 ∼ 𝑝(𝜃𝜃𝜃|);
2 for 𝜁 = 1 to 𝑁𝑠 do
3 Sample from the proposal: 𝜃𝜃𝜃′ ∼ 𝑞(𝜃𝜃𝜃′

|𝜃𝜃𝜃𝜁−1);
4 Compute 𝑟 from Eq. (8);
5 Generate a uniform random number: 𝛼 ∼  [0, 1];
6 if 𝑟 ⩾ 𝛼 then
7 Set 𝜃𝜃𝜃𝜁 = 𝜃𝜃𝜃′ ;
8 else
9 Set 𝜃𝜃𝜃𝜁 = 𝜃𝜃𝜃𝜁−1;
10 end
11 end

The described methodology is embedded within a parameterised
omputational framework by coupling the Bayesian algorithms and the
E model simulations (refer to Fig. 4), which enables the Bayesian
earning process to be fully automated.

. Real case study

The methodology for updating structural FE models proposed in
his paper is illustrated here for a sixteenth century cultural heritage
uilding in Granada (Spain), the San Jerónimo Monastery.

.1. Ambient vibration tests

The Ambient Vibration Tests (AVTs) are carried out to identify the
atural frequencies, the modal shapes and the modal damping of the
uilding. Fig. 5 shows a schematic representation of the sensor layout.
6

he configuration consists of a total of 62 points to be measured. All
Table 1
Results OMA: Natural frequencies (f), damping coefficients (𝜖), and MAC values.

SSI EFDD MAC
f (Hz) 𝜖 (%) f(Hz) 𝜖 (%)

Mode 1 1.01 1.28 1.01 0.59 0.96
Mode 2 1.38 1.11 1.38 0.9 0.99
Mode 3 1.85 2.00 1.85 0.96 0.96
Mode 4 2.42 2.74 2.39 0.58 0.7

measurement points are tracked in the three main directions, in order
to capture global vibration modes. Since eight triaxial accelerometers
are available for the testing process and two of them are kept fixed
as reference points, a series of 12 measurements is necessary to cover
all the measurement points. In each of these sets, accelerations are
recorded with a sampling frequency of 100 Hz and a sampling time
of 12 min.

Excitations during ambient vibration tests are associated with en-
vironmental loads. The used equipment consists of force-balanced ac-
celerometers with dimensions of 13.3 cm in diameter and 6.2 cm in
height (model ES-T). The equipment has a bandwidth ranging from
0.01 to 200 Hz, a dynamic range of 155 dB, and a recording range
of ±0.25 g to ±4 g. These accelerometers are connected, via five 40 m
ables and three 100 m long cables, to a 36-channel data acquisition
ystem with a 24-bit ADC, provided with anti-alias filters (OBSID-
AN X36, ROCK+, GRANITE model). Fig. 6 shows the experimental
ampaign.

.2. Operational modal analysis

The measurements recorded by the accelerograms in the AVT (Sec-
ion 4.1) are processed by two Operational Modal Analysis (OMA)
ethods: (i) Stochastic Subspace Identification (SSI) [38], and (ii)
nhanced Frequency Domain Decomposition (EFDD) [39] in the fre-
uency domain. Both methods are implemented using Artemis soft-
are, and the natural frequencies (𝑓 ), damping coefficients (𝜖), and
odal shapes obtained are subsequently correlated using the Modal
ssurance Criterion (MAC) in order to assess the accuracy of the mode
hapes obtained (see Table 1).

As Table 1 shows, the ambient vibration tests allows the first four
ibration modes in a range of frequencies up to 2.42 Hz to be accurately
dentified. Regarding the mode shapes, the MAC values are higher than
.96 for the first three modes, indicating good correlation between both
ethods (SSI and EFDD).

Fig. 7 shows the first four mode shapes obtained from OMA. As can
e observed, the first mode is the only one that can be considered local
ince it only affects the tower through a bending with respect to the
Z plane, the second identified mode corresponds to the combination
f a bending of the tower in the XZ plane and a transverse translation
ode in the transept area in the ZY plane. The following two modes

re mainly translational in the XY horizontal plane. The third mode
ontemplates a simple transverse translation with a maximum displace-
ent in the middle of the central nave in the 𝑦-direction, on the other
and, the transept shows a movement in the 𝑥-direction. The fourth
ode presents a transverse translation with an inflection point half of

he central nave, in addition the tower presents a twist with respect to
he vertical 𝑧-axis.

The free vibration of the simplified FE model (Fig. 3), which in-
ludes soil–structure interaction, has been studied. The input model
arameters are selected from a previous research work of this building
40] and 25 modes of vibration are calculated. Most of the modes are
elated to mechanical simplifications, do not correspond to the real
tructure, and they have not a relevant weight of the effective mass.
able 2 summarises the effective mass of the modes which are related
o the real structure:
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Fig. 4. Parameterised computational model of the Bayesian Inference.
Fig. 5. Accelerometer locations directions. In the central church, accelerometers are located on top of the cannon. In the tower (shown in the left) measurements were taken at
different altitudes.
Table 2
Effective mass of the vibration modes.

Effective mass (%)

f (Hz) x-direction y-direction z-direction

Mode 1 1.05 68.61 2.67 3.07
Mode 2 1.5 7.90 5.89 89.70
Mode 3 1.92 0.004 43.24 0.41
Mode 4 2.01 10.54 11.67 6.00
Mode 5 2.52 10.91 20.65 0.09
Mode 6 2.72 0.33 14.97 0.57

As evident from the effective mass analysis, the response of the
structure is mainly governed by the first two modes of vibration. These
two modes provide the largest effective mass in the 𝑥-direction and 𝑧-
direction. The third mode, responsible of the largest effective mass in
the 𝑦-direction, is mainly due to the movement of the soil. Therefore, in
this work the first two natural frequencies and mode shapes estimated
from the OMA are taken as the reference data set for the model
updating procedure using the Bayesian approach.
7

4.3. Bayesian model parameters identification

The FE modelling described in Section 3.1 is parameterised con-
sidering the bulk modulus of the main construction material (𝐸), the
main cloister walls (𝐸𝑐), the one of the inner arcade of the church
(𝐸𝑎), and the stiffness of the soil (𝑘), as uncertain input model pa-
rameters. The prior distributions of these input model parameters,
 = {𝐸, 𝑘, 𝐸𝑐 , 𝐸𝑎, 𝜎𝑓 }, are represented by uniform distributions and are
summarised in Table 3. In particular, the range of values for the bulk
modulus of the stone (𝐸) and the main cloister (𝐸𝑐) have been fixed
according to a previous research work of the limestone (calcarenite) of
Granada [20]. The stiffness of the soil (𝑘) is in reasonable agreement
with the approximated values for the modulus of subgrade reaction
proposed by Bowles [41]. Finally, the bulk modulus of the arcade (𝐸𝑎)
it is within the range of values expected for handmade bricks [21,22],
its actual construction material.

Then, samples from the posterior PDFs of the model parameters
are obtained using the M–H algorithm with 150,000 realisations. The
prior, posterior 𝑝(𝜽|,) and the maximum a posteriori (MAP) of
each individual parameter (𝜃1 = 𝐸, 𝜃2 = 𝑘, 𝜃3 = 𝐸𝑐 , 𝜃4 = 𝐸𝑎,
𝜃5 = 𝜎𝑓 ) are represented in Fig. 8. Note that the identified MAP
values of the model parameters are consistent with the physical reality.
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Fig. 6. Experimental campaign of the Ambient Vibration Tests (AVTs).
Fig. 7. The first four mode shapes obtained from OMA.
Table 3
Prior information of model parameters.

𝜃1 = 𝐸 [MPa] 𝜃2 = 𝑘 [N/m] 𝜃3 = 𝐸𝑐 [MPa] 𝜃4 = 𝐸𝑎 [MPa] 𝜃5 = 𝜎𝑓
𝑝(𝜽|)  (0.35, 2) ⋅ 104  (1.5, 8.5) ⋅ 106  (0.35, 2) ⋅ 104  (0.7, 4.2) ⋅ 103  (1.2, 7.5) ⋅ 10−2
8
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Fig. 8. Priors (black dashed line), posterior (solid line), and maximum a posteriori (grey dashed line) of the input parameters: (a) bulk modulus of the stone 𝐸, (b) soil stiffness
𝑘 (c) bulk modulus of the cloister 𝐸𝑐 , (d) bulk modulus of the arcade 𝐸𝑎, (e) uncertain parameter 𝜎𝑓 .
Also note that parameters learn from data as there is a clear informa-
tion shrinkage, from non-informative uniform priors to concentrated
probability density function. However, the posterior uncertainty in the
model parameters identification is relatively high, meaning that there
is an irreducible discrepancy between the modelled and experimental
responses. If a more detailed FEM model is used, such uncertainty will
be reduced.

Finally, in order to check the validity of the parameters identifica-
tion problem, the FE model is simulated using the posterior samples
of the model parameters, and the first two frequencies and modes
are computed. Fig. 9 shows the probability density functions for the
simulated frequencies in comparison with measured ones (Fig. 9. a–
b), and results for the simulated MAC values (Fig. 9. c–d). It can be
observed that the frequency response of the model using the posterior
PDF parameters is accurate (its MAP values are very close to the
frequencies measured) and its level of uncertainty is relatively low.
MAC values, present moderately high MAP values (0.6 for 𝑓1 and 0.65
for 𝑓2), and higher uncertainty. This also responds to an irreducible
discrepancy between the simulated and measured shape modes.

5. Discussion

A Bayesian methodology for parameter identification from ambient
vibration tests in CH buildings has been presented in this paper. The
proposed methodology is generic and as such, it can be applied to any
other structure providing on availability of AVTs data. Here it has been
specialised to a particular CH stone masonry building, for which a series
of assumptions have been made. The implications of some of these
modelling assumptions as well as the lessons learned from this research
are discussed here for the sake of clarity and greater extensibility.

First, this study has considered a limited amount of uncertain model
parameters to be updated, namely, the most sensitive ones after a
Global Sensitivity Analysis. The reason is twofold: (1) considering all
possible uncertain parameters would lead to a significant increase
of the ‘unnecessary’ model complexity in relation to the data, thus
9

biasing the inference results [8]. It means that the model will not
generalise well when making predictions since it depends too much
of the details of the data (even noise). This observation contradicts
the general ‘forward problem’ conception that more complex analysis
may be necessary to capture the minor details of the complex reality.
For inverse problems, such as the model parameter updating presented
here, this may not be the case. Simpler models should be preferred
over more complex models that lead to only slightly better agreement
with the data. This is an instance of the well-known Principle of Model
Parsimony or Ockham’s razor [8]. The other reason (2) is the high com-
putational cost associated to such an (unnecessary) high-dimensional
model updating process, which, in addition to the computational com-
plexity of the FE model, would make the updating process unfeasible
in practice, requiring high performance computation.

Second, a simplified FE model of the CH building has been adopted
in this research in order to substantially reduce the computational
complexity of the overall model updating process. This FE model relies
on the assumptions that the building material properties (e.g., the bulk
modulus of stone) remain the same throughout the entire building,
and that some internal building structures such as the inner arcade of
the church and the main cloister walls can be represented by springs
elements whose stiffnesses are then identified in the model updating
process, among others. Such simplifying assumptions will have an im-
pact on the uncertainty of the posterior PDFs of the model parameters,
as shown in Fig. 8, so that the harder the assumption the more spread
out the PDFs of the model parameters. If a more detailed FE model
was adopted, such as the underlying soil below [42], a less uncertain
parameter identification would have been obtained; however, this is at
the cost of heavy computation. In this sense, computational techniques
such as HPC computing or surrogate modelling would be required to
substantially reduce the overall computational cost so that the proposed
Bayesian updating methodology can be feasible in real life buildings
such as the investigated here.

Finally, it is important to remark that for the case study presented
here, the first two natural frequencies and mode shapes were used



Engineering Structures 284 (2023) 115924E. Hernández-Montes et al.
Fig. 9. Maximum a posteriori (dashed line), measured frequency (blue triangle) and simulated values (solid line) of: (a) modelled 𝑓1 frequency, (b) modelled 𝑓2 frequency, (c)
modelled MAC of the 𝑓1 frequency, (d) modelled MAC of the 𝑓2 frequency. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
as input data for the Bayesian updating process. These were revealed
as the most relevant ones after an effective mass analysis, shown in
Table 2. The consideration of less relevant modes in the parameter
identification process would have ended in higher uncertainty follow-
ing the Principle of Model Parsimony discussed before. In any case, the
adoption of more or less vibration modes is case specific and does not
invalidate the proposed methodology.

6. Conclusions

A Bayesian learning methodology has been presented in this paper
to infer the most plausible values of the material and structural param-
eters of a cultural heritage building based on modal information from
ambient vibration data. The suitability and effectiveness of the method
have been tested in real case study, the San Jerónimo Monastery, a
sixteenth century CH building in Granada (Spain). As evident from
the results, the methodology allows several sources of uncertainty to
be accounted for in the inference process, such as the uncertainty
coming from the measurements noise and the epistemic uncertainty
coming from the adoption of a 3D macro-modelling approach to repre-
sent the modal response of the entire building. Besides, the following
conclusions and lessons learned are drawn from this paper:
10
• The Bayesian learning paradigm presented in this manuscript has
shown efficiency in identifying the uncertain model parameters
in a real large-scale CH building. However, this efficiency was
gained by adopting several modelling simplifying assumptions
which translated into larger posterior uncertainty. This suggests a
trade-off between model precision and uncertainty that is inher-
ent in the Bayesian learning process and needs to be assessed in
a case specific basis.

• For a given FE model of the building, selecting a parsimonious
amount of updatable model parameters will prevent increasing
the unnecessary model complexity. Such an unnecessary complex-
ity may lead to biased inference results.

• After a pilot run using frequencies as the only system output,
the additional consideration of the modal shapes was revealed as
key for a more robust parameter identification. The incorporation
of the MAC values in a soundly probabilistic way within the
Bayesian learning methodology is regarded as the main method-
ological novelty of the paper.

Further research work is under consideration with regards to the
adoption of more detailed large-scale FE models of the entire building
including the material non-linearities within the proposed framework
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at a reasonable computational cost. This requires the adoption of meta-
modelling techniques or high performance computation in such a way
that the resulting updating framework can be executed in quasi-real
time in a continuous Structural Health Monitoring context.
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