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MODEL TYPE EFFECTS ON THE ESTIMATED SEISMIC 
RESPONSE OF A 20-STORY STEEL MOMENT RESISTING 

FRAME 
 

Christos G. Lachanas1 and Dimitrios Vamvatsikos2  

Abstract: Finite element models of varying sophistication may be employed to determine a 

building’s seismic response, with increasing complexity potentially offering higher fidelity at 

the cost of computational load. To account for this effect on the reliability of performance 

assessment, model-type uncertainty needs to be incorporated, as distinct to the uncertainty 

related to a given model’s parameters. At present, only placeholder values are available in 

seismic guidelines. Instead, we attempt to accurately quantify them for a modern 20-story steel 

moment-resisting frame. Different types of 3D, 2D multi-bay, and 2D single-bay multi-degree-

of-freedom models are investigated, together with their equivalent single-degree-of-freedom 

ones, to evaluate the model dependency of the response both within each broad model category, 

as well as among different categories. In conclusion, ensemble values are recommended for the 

uncertainty in each model category showing that for the perfectly-symmetric perimeter-frame 

P-Δ sensitive building under investigation, the uncertainty stemming from 3D versus 2D, or 

distributed versus lumped plasticity models is lower than the governing record-to-record 

variability. 

CE Database subject headings: Earthquakes; Performance evaluation;  

Author Keywords: seismic performance; model type uncertainty; pushover analysis; 

incremental dynamic analysis; 

Introduction 

The evaluation of the seismic performance of a structural system is associated with several 

uncertainty sources, which are either of aleatory or epistemic nature. Aleatory uncertainties are 

related with the inherent randomness of a natural phenomenon, such as the earthquake loading, 

and cannot be reduced. On the other hand, epistemic uncertainties are associated with the lack 

of knowledge or data and can be reduced through more experimental tests, such as the 

determination of material properties, or via more accurate models and methods of analysis (Der 

Kiureghian and Ditvelsen 2009; Wen et al. 2003). Nowadays, both the earthquake resistant 

design of new buildings and the assessment of the seismic performance of existing buildings 

are based on finite element models. Modern software enables the use of complex 3D models, 

elastic or inelastic, to assess the response of structures via linear or nonlinear analysis. 

However, when considering the seismic response of a building through nonlinear dynamic 

analysis, model complexity incurs significant computational cost. Especially in the context of 

strength reduction factor estimation (FEMA 2009), vulnerability assessment (D’ Ayala et al. 

2015) and regional loss estimation (Sousa et. al 2018; Sousa et al. 2016), the need to model 

 

1 PhD Student, Institute of Steel Structures, School of Civil Engineering, National Technical University of 

Athens, 9 Iroon Polytechneiou str., Zografou Campus, GR-15780 Athens, Greece (corresponding author).  

E-mail: lahanasch@central.ntua.gr, cglachanas@gmail.com 
2 Associate Professor, Institute of Steel Structures, School of Civil Engineering, National Technical University 

of Athens, 9 Iroon Polytechneiou str., Zografou Campus, GR-15780 Athens, Greece.  

 E-mail: divamva@mail.ntua.gr 

mailto:lahanasch@central.ntua.gr


2 

 

and analyze multiple archetype/index buildings favors the use of simpler 2D models, or even 

equivalent single degree of freedom (SDOF) ones. Similarly, different element modeling 

options may enhance or degrade accuracy in different ranges of response. For example, 

phenomenological lumped plasticity beam-column elements may capture better the near-

collapse response, while distributed plasticity models can better capture the near-yield response 

(Haselton 2006). The end result is that potentially non-negligible modeling uncertainty is 

introduced.  

Model uncertainty comprises two contributions (e.g., Bradley 2013). The first refers to 

model parameter uncertainty, i.e., the variability induced by uncertainties in the model 

parameters (strength, stiffness, mass, dimensions, etc.), and the second to model type 

uncertainty, or the variability that results from different modelling choices (e.g., 3D versus 2D 

model assumptions, type of finite element or damping model, the modeling or not of 

foundations and soil, etc.). Up until now, several studies (O'Reilly and Sullivan 2018; Kazantzi 

et al. 2014; Ibarra and Krawinkler 2011; Jalayer et al. 2010; Vamvatsikos and Fragiadakis 

2010; Dolsek 2009; Liel et al. 2009; Kwon and Elnashai 2006; Wen et al. 2003; Porter et al. 

2002; Yun et al. 2002) have investigated mainly model parameter uncertainty, finding small to 

moderate effects in most cases, especially for modern structures. Contrarily, on the subject of 

model type uncertainty, due to the practically unbounded range of options available, few 

comprehensive studies exist (e.g., Lignos et al. 2013; Chi et al. 1998). In general, uncertainty 

may introduce both bias and variance in our estimates of a building’s performance. Bias is a 

systematic error that causes a deviation in the central value (mean or median) of our estimates. 

In other words, it represents a failure in capturing the true central value. Variance, on the other 

hand, concerns the added variability to an already uncertain response, akin to increased noise 

in the system. As long as the added variance is lower than the dispersion of the already-

accounted-for governing source of variability (e.g., the natural aleatory variability due to 

records) its effect tends to disappear. At worst, if well quantified, it can be handled via standard 

probabilistic approaches present in any good framework (e.g., Cornell and Krawinkler 2000; 

or Cornell et al. 2002). For example, FEMA P-58 (FEMA 2012) and FEMA P695 (FEMA 

2009) contain different proposals, based on expert opinion, for incorporating the added 

variability due to model quality. Bias instead is considered an important problem, as it cannot 

be handled reliably via statistical approaches: It necessitates the use of a bias correction factor 

for the central value of the distribution (mean or median), which generally cannot be estimated 

with sufficient reliability. Note that, in general, bias due to gross human errors cannot be 

accounted for. We are only discussing bias due to verifiable and acceptable engineering 

choices. 

One of the few cases where such a bias correction has been employed is the spectral shape 

factor of FEMA P695 (FEMA 2009), which attempts to remove the bias due to scaling with an 

insufficient intensity measure. Otherwise, most guidelines tend to assume that bias does not 

exist, and models only incur additional variance. There is plenty of evidence, though, that this 

is not the case. For example, Chi et al. (1998) investigated the seismic response of a 17-story 

building damaged by the Northridge through different models. They examined the effect of 

neglecting characteristics such as three-dimensional torsion, secondary elements, and strength-

stiffness degradation, showing that the choice of a model always comes with some bias.  

On account of the above, while model type uncertainty is being widely recognized as a 

non-negligible uncertainty source, there are few (if any) numerical results on its actual impact 

on performance assessment. Aiming to provide such an outlook an initial attempt is made to 

quantify model type uncertainty for a plan-symmetric 20-story steel moment-resisting frame 

(SMRF). To this end, starting from the 3D frame model of the building, a gradual simplification 

of the model is undertaken: to 2D multi-bay frame (with or without basements), 2D single-bay 

frame and finally to SDOF model, as produced from the pushover analysis of the multi-degree-
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of-freedom model (MDOF). All in all, 5 model categories are investigated, while in each 

MDOF model category there are alternative models with either lumped plasticity or distributed 

plasticity fiber section beam-column elements. Considerably more options are available in the 

literature, most notably by Elkady and Lignos (2015) on the influence of gravity frames, 

composite slabs, panel zones etc. In addition, one could incorporate the influence of soil-

foundation-structure interaction, non-structural components, alternative damping models, or 

large displacement analysis (beyond just the inclusion of P-Delta effects). Instead, we chose to 

focus on more practice-oriented versions. The corresponding variance is thus certainly lacking 

in the breadth that it could attain with additional models investigated. Yet, it should still be 

representative of a wide range of practical options. Incremental Dynamic Analysis (IDA, 

Vamvatsikos and Cornell 2002; Vamvatsikos and Cornell 2004) is employed to assess the 

seismic response of each model. Our aim is to calculate the bias and variance stemming from 

the comparison between the performance of different models, in order to give engineers a sense 

of the level of safety and fidelity in their results, depending on the model type they use. It is 

important here to say that although SDOF models are considered to have low fidelity for the 

higher-mode influenced tall building under investigation, they are included for reasons of 

completeness. 

Building Description 

The building under investigation is the pre-Northridge SAC LA20, in the form originally 

modeled by Gupta and Krawinkler (1999). The building consists of 20 stories and 2 basements 

of the same regular plan. The basements are 3.66m (12ft) high, the first story 5.49m (18ft) and 

the ones above 3.96m (13ft). As shown in Fig. 1, there are 2 moment-resisting frames (MRFs) 

in each main direction consisting of 5 bays at 6.10m (20ft) in the Χ direction and 6 bays at 

6.10m (20ft) in the Y direction. There is also an internal gravity frame connected to the external 

moment-resisting frames with beams 12.19m (40ft) in length. The MRF beams were designed 

according to low-ductility pre-Northridge standards, e.g., having no reduced beam section 

(RBS) connections. The corner columns are Hollow Square Sections (HSS), while the internal 

MRFs columns, the gravity columns, and the beams are wide flange sections (W). The 

structural steel quality is ASTM A36, with an expected yield strength of fy = 339.22ΜPa 

(49.2ksi). Story masses, as proposed by Gupta and Krawinkler (1999), are 563.76t 

(38.63kipf∙s2/ft) at the roof of the ground floor, 551.06t (37.76 kipf∙s2/ft) at each typical floor 

and 584.63t (40.06kipf∙s2/ft) at the roof of the 20 story. The total weight of the above-ground 

stories of the building comes to about 110,000kN and the damping ratio is 2%. The high aspect 

ratio (height over width) of the building results to a lateral deformation pattern that is a 

combination of shear and bending behaviour. Moreover, the aforementioned regularity in plan 

makes this building insensitive to torsional effects. Thus, lesser differences are expected when 

going from the 3D to the 2D model assumptions vis-à-vis plan-asymmetric buildings. 

Analytical Modeling 

A number of 3D/2D and equivalent 1D models have been generated. To distinguish them, a 

four-digit alphanumeric code is employed, with individual digits designating the following 

properties 

1) M/S: To denote the number of degrees of freedom (MDOF or SDOF)  

2) 3/2/1: to denote the dimensionality and size of the model, i.e., 3D or 2D multi-bay 

models (3 and 2, respectively) versus 2D one-bay models (1). This designation is kept 

even for SDOF equivalent models to better indicate which model the SDOF is 

representing. 
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3) B/G: To distinguish models incorporating the basements (B) from the ones stopping at 

the ground level (G). 

4) 1/2/…/6: To distinguish different options in modeling beam-column elements, ranging 

from elastic to different choices in lumped plasticity or distributed plasticity nonlinear 

elements 

Thus, for example, the M3B3 model is the 3D multi-bay distributed plasticity model with 

basements, M2G6 is the 2D multi-bay distributed plasticity model without basements, and 

S3B3, S2G6 are their corresponding equivalent SDOF models. Even for a single building 

configuration, these four variables make for a wide model space that cannot be explored fully. 

We did not examine all the combinations, trying e.g. to have 1:1 correspondence between the 

3D and 2D models developed. Instead we tried to explore the parameter space by diverse 

structural models that still represent feasible engineering designs. In the following, the different 

model types adopted are discussed in detail. 

3D with Basements (M3Bx) 

The first model category refers to the full 3D frame model of the building (Fig. 2(a)). This is 

formed in the OpenSees open-source analysis platform using beam-column elements for both 

MRF and gravity frame members. Centerline dimensions were employed without modeling the 

panel zones. This is a modeling choice that could make a difference for older steel frames with 

flexible panels but this is not the case for the case at hand (Foutch and Yun 2002; Gupta and 

Krawinkler 1999). Both basement stories are included in the model in order to properly 

incorporate the flexibility of the ground floor columns. Masses were placed at each diaphragm 

and gravity loads were assigned to the columns according to their tributary areas. 2% Rayleigh 

damping was assumed at the first and fourth mode of vibration. Alternative, non-Rayleigh 

damping models are also possible (Chopra and McKenna 2016; Hall 2006), but not considered 

herein. For all models, P-Δ effects were taken into account through a first-order treatment. Due 

to plan symmetry, the first two modes of vibration are translational in X and Y and of nearly 

the same period, with the X direction being slightly more flexible due to having one less bay. 

For the first model of this category (M3B1), lumped plasticity elements were employed 

for the MRF and gravity frame columns of the first story and all the MRF beams, while all 

gravity columns and all MRF columns above the first floor were modeled as elastic. For the 

inelastic elements, stiffness was modeled using the (elastic hardening with kinematic 

hysteresis) Steel01 material (OpenSees 2006). Post yield hardening was set at 1%, while for 

the gravity frame beams a reduction of hinge stiffness (E) and plastic moment capacity (Mpl) 

at 25% of their initial values was assumed (Foutch and Yun 2002), since they are shear-only 

connections. In the second model of this category (M3B2) both columns and beams were 

modeled as lumped plasticity elements using a similar approach to M3B1. For the corner 

columns of the MRF, no reduction for biaxial moment interaction was assumed by using 

independent point-hinge springs in each axis. The third model (M3B3) employs distributed 

plasticity fiber section elements. The Hardening material (OpenSees 2006), using an elastic-

hardening backbone with 0.3% hardening and kinematic hysteresis was employed, whilst each 

member section was divided into ten fibers along height and width and into two fibers along 

thickness. The members were modeled as force-based elements, while five integration points 

along each member were assumed using Gauss-Lobatto integration (Scott 2011), which places 

integration points at the member ends, where the maximum bending moments and strains at 

MRFs members are expected. Gravity frame beams were modeled as lumped plasticity 

elements similarly to the aforementioned 3D models because of their small contribution to the 

total seismic response and their nearly pinned connection to the columns. For all models, 

diaphragms were implemented via a kinematic constraint. Despite the use of a distributed 

plasticity fiber element for the beams of model M3B3, this does not introduce any parasitic 
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axial forces in the beams due to their symmetric behavior under positive versus negative 

bending moments. Composite action between the beam and the slab at the plastic hinge region 

(Elkady and Lignos 2014) was disregarded, thus assuming no shear studs in this area (per 

typical design practice) and an adequate gap between the slab and the column flange. 

2D no Basements (M2Gx) 

As discussed, the first model simplification from 3D model to 2D model refers to the 2D multi-

bay frame model. Only the X-axis MRF is modeled (Fig. 2(b)) being the more flexible. In all 

cases, a 2D analytical model was developed in OpenSees without basements. P-Δ effects were 

included using a first-order treatment of geometric nonlinearity. Additionally, a leaning column 

was added to account for gravity frame mass and stiffness. 2% Rayleigh damping at the first 

two modes of vibration was assumed. The first model (M2G1), similarly to the previous 3D 

category, employs lumped plasticity elements for all beams and the ground floor columns while 

elastic elements were employed for the columns above the first floor. For the rotational springs, 

elastic hardening behavior with 1% hardening ratio was assumed using the Pinching4 material 

(OpenSees 2006). Similarly, in the second model (M2G2) both beams and columns were 

modeled as lumped plasticity members. 

Models M2G3 to M2G5 employ lumped plasticity elements with an Ιbarra and Krawinkler 

(2005) material law as this was modified by Lignos and Krawinkler (2011), for the idealization 

of the rotational springs at the member ends. The rotational hinge parameters were determined 

according to the expressions proposed by Lignos and Krawinkler (2011) for “other than RBS” 

connections. In particular, the effective yield strength My is assumed equal to 1.17Mpl due to 

overstrength, whereas the post-yield strength ratio is Mc/My = 1.10 and the residual strength is 

Mr = 0.40Μy. The yield rotation for double curvature bending was assumed to be θy = Myl/(6EI) 

where l is the length of the member, while the pre-capping θp and the post-capping θpc plastic 

rotation were computed as per Lignos and Krawinkler (2011) depending on the section’s height 

d. Due to the fact that the proposed relationships refer to W sections, the corner columns (HSS) 

were taken as equivalent W sections in terms of section area and major axis moment of inertia 

for quantifying the parameters. The ultimate rotation capacity θu was estimated to be 0.05 to 

0.06rad for “other-than RBS” beams, but as mentioned by Lignos and Krawinkler (2011) it can 

be up to three times as large. For M2G3, the model employs only the rotations θy and θp as 

mentioned above, while the effective yield-strength was taken as My =1.00Mpl rather than 

1.17Mpl. The hardening ratio was assumed 1% and the capping negative slope equal to the 10% 

of the initial section stiffness. For M2G4 and M2G5 all the recommendations of Lignos and 

Krawinkler (2011) were followed using θu = 0.06 for the former and θu = 0.18 for the latter. 

Finally, for M2G6 distributed plasticity force-based elements were employed for both beams 

and columns.  

2D with Basements (M2Bx) 

The second 2D multi-bay frame category represents a direct 2D analogue of the M3Bx 3D 

models. Ιn particular, the M2Bx model (Fig. 2(c)) comprises one MRF in the X direction of 

the corresponding 3D model (M3Bx). Here, similarly to the 2D without basements models, 

there is a leaning column for the gravity frames and a first-order treatment of P-Δ effects. In 

direct correspondence to the 3D models, M2B1 employs elastic columns for the 2nd story and 

above, while the ground floor columns and all beams use phenomenological lumped plasticity 

elements; in M2B2 all beams and columns were modeled as lumped plasticity elements, 

whereas in M2B3 all members were modeled as distributed plasticity fiber-section elements. 

One additional model without a 3D analogue, namely M2B4, was also employed using lumped 

plasticity hinges at the member ends, each represented by a single fiber section and appropriate 
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plastic hinge length. This offers a compromise between M2B2 and M2B3 offering interaction 

of axial force and bending moment at a relatively low computational cost.   

2D One Bay with Basements (M1Bx) 

Offering further reduction in complexity a 2D single-bay frame model is considered (Fig. 2 

(d)). There is a long history of such models, stemming back at least to Luco et al. (2003). 

Herein, a single 20ft (6.10m) bay model is employed, incorporating both basements, a leaning 

column, and P-Δ effects. Only lumped plasticity elements are employed, as axial-moment 

interaction cannot properly be accounted for, due to the lumping of multiple columns into one.  

A key issue to mention for this category is the column area adjustment that is required to 

capture the actual bending stiffness of the building. While this model type can reliably capture 

the shear stiffness of the building, due to its lower width it needs to be adjusted to properly 

represent its bending stiffness, otherwise it fails to accurately capture even the first-mode 

period of a tall structure. On account of the above, the moments of inertia of the beam and the 

two columns representing each story are computed as: 

𝐼𝑏𝑒𝑎𝑚 = ∑ 𝐼𝑏𝑒𝑎𝑚,𝑖 

𝑛𝑏

𝑖=1

 (1) 

𝐼𝑐𝑜𝑙𝑢𝑚𝑛 =
1

2
∑ 𝐼𝑐𝑜𝑙𝑢𝑚𝑛,𝑖

𝑛𝑐

𝑖=1

 (2) 

where nb is the number of beams and nc the number of columns per story of the multi-bay 

frame, while Ibeam,i and Icolumn,i are the bending moments of inertia of the given story’s i-th beam 

and column, respectively. These are sufficient to account for beam shear behavior. To also 

capture the system bending behavior, the section area A of the columns needs to be increased 

to AO in each story. This can be easily done by considering the composite section of the N 

columns of the multi-bay model versus the two columns of its one-bay version and matching 

their moments of inertia around the neutral axis:   

2𝐴𝑂 (
𝐿

2
)

2

= ∑(𝛢𝑖𝑥𝑖
2)

𝑁

𝑖=1

⇔ 𝐴𝑂 = 2 ∑ [𝐴𝑖 (
𝑥𝑖

𝐿
)

2

]

𝑁

𝑖=1

 (3) 

where L is the bay length, Ai the section area of column i, and xi the horizontal distance of 

column i from the gravity center of the N columns along the side of the multi-bay 2D model. 

If ΑH is the corner column area and ΑW the internal column area of the MRF (Fig. 3), then Eq. 

(3) becomes: 

𝐴𝑂 = 2[2𝐴𝐻(2. 52) + 2𝐴𝑊(1. 52) + 2𝐴𝑊(0. 52)] = 4(6.25𝐴𝐻 + 2.5𝐴𝑊) (4) 

This adjustment is the main advantage of this model type in comparison with fishbone 

models (Luco et al. 2003, Nakashima et al. 2002). The latter are of similar complexity, yet by 

having only a single column per story they cannot easily display the proper bending stiffness 

without some careful calibration. In general, for buildings with aspect ratio (height over width) 

less than 2.5–3.0 this adjustment may be neglected (Luco et al. 2003). Similarly to the 2D no 

basement models (M2Gx), M1B1–M1B5 are direct analogues of M2G1–M2G5 but with 

basements included. M1B1 employs lumped plasticity elements for all beams and the ground 

floor columns, while the rest of the columns are elastic. In M1B2 all columns and beams were 

modeled as lumped plasticity elements, whereas M1B3–M1B5 used lumped plasticity 
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members using the Ιbarra and Krawinkler model (2005) as modified by Lignos and Krawinkler 

(2011) for rotational spring idealization at the member ends.  

Equivalent SDOF systems (Sxxx) 

For each one of the 18 aforementioned MDOF models the equivalent SDOF model is produced 

through nonlinear static (pushover) analysis. Specifically, a 1D nonlinear spring with 

multilinear backbone curve was employed in OpenSees (Pinching 4 material). The spring’s 

force deformation (F*-δ*) backbone curve and period (T*) are determined as (Fajfar 2000):   

𝑚∗ =
𝑎𝑀

𝛤
 (5) 

𝐹∗ =
𝑉𝑏𝑎𝑠𝑒

𝛤
 

(6) 

𝛿∗ =
𝛿𝑟𝑜𝑜𝑓

𝛤
 

(7) 

𝑇∗ = 2𝜋√
𝑚∗𝛿𝑦

∗

𝐹𝑦
∗

 

(8) 

where a is the percentage of the total mass M participating in the MDOF’s first-mode response, 

m* is SDOF mass, whereas Γ is the first-mode participation factor to transform from MDOF to 

equivalent SDOF response parameters and vice-versa. Vbase-δroof represent points of the MDOF 

capacity curve, while Fy
*-δy

* are the yielding points of the F*-δ* fitted curve. Fitting was done 

using a four-segment piecewise-linear approximation as illustrated in Fig. 4 for the M3B2 to 

S3B2 conversion. Finally pushover analysis results were used to transform δ* to δroof  (Eq. (7)) 

and the maximum interstory drift ratio (θmax) of the building. 

Performance Assessment 

Fig. 5 illustrates the capacity curves for the MDOF models. Pushover analysis employed a 

second-order lateral-load pattern for the 3D models in order to include higher mode shapes: 

𝐹𝑖 = 𝐹𝑏

𝑤𝑖𝑧𝑖
2

∑(𝑤𝑖𝑧𝑖
2)

  (9) 

where Fb is the total lateral load and wi, zi are the i-th story weight and height. All other 

categories employed a first-mode pattern. As illustrated, all model types capture the elastic 

behavior of the building (elastic branch). Still, the 2D models where the full expressions of 

Lignos and Krawinkler (2011) were employed have notably higher strength due to the 1.17 

overstrength factor of the effective yield strength My, having at the same time lower ductility 

because of the restricted ultimate rotational capacity of the members. Models with elastic 

column elements have a shallower negative stiffness segment as expected, while the fiber 

models are somewhat distinguished from the lumped plasticity ones by showing lower strength 

in 3D models, potentially due to biaxial effects. This difference is eliminated in 2D models. In 

general, though, most of the differences are found in the post-peak region, i.e. for roof drifts 

greater than 1.5-2.0%. This is despite the differences in the models adopted for beams and 
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columns and can be attributed to the significance of the P-Δ effects that govern the behavior of 

the structure. Shorter buildings with less P-Δ influence will generally better bring out the 

differences among the various element models. 

IDA is employed to determine the seismic response of the models. As Intensity Measure 

(IM), we use the 5% damped first-mode spectral acceleration Sa(T1,5%), in X direction 

(arbitrary component). In addition, the geometric mean of both horizontal components, 

Sagm(T1,5%), as well as the average spectral acceleration AvgSa were employed at the level of 

summarizing the final results. AvgSa is defined as the geometric mean of spectral ordinates 

from both horizontal components (Kazantzi and Vamvatsikos 2015; Eads et al. 2015; Tsantaki 

and Adam 2013; Bianchini et al. 2009; Vamvatsikos and Cornell 2005a; Cordova et al. 2000):  

𝐴𝑣𝑔𝑆𝑎 = [∏ 𝑆𝑎(𝑇𝑅𝑖

𝑛

𝑖=1

)]

1/𝑛

 (10) 

TRi are the reference periods, herein chosen according to Kazantzi and Vamvatsikos (2015) to 

be [T2, min [(T2+ T1)/2, 1.5∙T2], T1, 1.5∙T1, 2∙T1]. Although the periods among different models 

and different horizontal axes within a model do not show large differences, to ensure a common 

IM, the X-direction periods of the M3B2 were used to define Sa and AvgSa for all models. In 

general, AvgSa is more efficient and sufficient as an IM but Sa(T1,5%) is still widely used 

(FEMA 2012) so we compute model type uncertainty for both of them. As Engineering 

Demand Parameter (EDP), the maximum interstory drift ratio in Χ direction (θmax) and the peak 

floor acceleration in X direction (PFA) were employed, as indicative of structural and non-

structural damages. Y direction values are disregarded as they cannot be captured by the 2D or 

1D models. Thirty ordinary (no long duration, no pulse-like characteristics) ground motion 

records (PEER 2005; Chiou et al. 2008) were used from five earthquake events; they are 

characterized by firm soil (types C/D per NEHRP classification) with moment magnitude 

ranging from 6.53-6.93. For 3D models both horizontal components were employed, while 

only one arbitrary component was assigned to 2D and SDOF models. Representative individual 

IDA curves and the corresponding fractiles appear in Fig. 6 for model M3B2. 

Comparison Between Models 

Table 1 presents the results of the modal and the pushover analysis for the 36 models under 

investigation. The periods of the 1st, 2nd and 4th mode for the M3Bx models, the first two modes 

for 2D models and Τ* for SDOF models are reported. The 4th mode of the M3Bx models is 

translational in X direction and corresponds to the 2nd mode of the 2D multi-bay models 

(M2Gx, M2Bx). In addition, the maximum base shear Vmax from pushover analysis and the 

maximum F* of SDOF fitted F*-δ* curve are presented. Finally, the computational time 

required for the pushover, tpo, is offered as an indication of the complexity of the model. The 

pushover analysis was performed on a laptop with an Intel Core i7 6500U @2.50GHz central 

processing unit using identical analysis setting (number of steps, convergence, tolerance etc.) 

for all models. For SDOF models no time is recorded, as it is essentially the same as the tpo οf 

the corresponding MDOF model.  

As shown in Table 1, there are non-negligible differences in computational time between 

3D and 2D models as also among distributed plasticity and lumped plasticity models. It makes 

little sense to offer computational times for a single record dynamic analysis, because there is 

considerable record-to-record dependence. For the entire suite of 30 records, the M3B3 model 

IDA’s computational time is about 55 hours, for the M3B2 about 25 hours, and about 20 hours 

for M3B1. For 2D models, the computational time ranges within 2–4 hours, whereas for SDOFs 

it is less than 0.10 hours. 
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In processing the results of different models, one needs to account for the within-model or 

intra-model variability, typically due to record-to-record aleatory randomness, and the 

between-model or inter-model variability that stems from the fundamental differences between 

different model types. In all practical assessment situations, an engineer will only have access 

to a single model, which he/she can potentially subject to a set of ground motion records and 

determine the intra-model variability. On the other hand, having no comprehensive suite of 

alternative models, he/she will not be able to assess the level of bias in his/her single model. 

This is why the intra-model term can be thought of as the primary variance of the assessment 

results, while the inter-model term is essentially a measure of the distribution of bias in a classic 

bias-variance decomposition (Hastie et al. 2009) of the overall inference problem. 

Incorporating the bias and variance terms into one’s results requires making a choice. One 

may opt to discard the decomposition of model type uncertainty into its bias and variance 

components and instead treat both as variance. This is the so-called first-order assumption 

typically adopted in Performance Based Earthquake Engineering (FEMA 2012; FEMA 2009; 

Cornell et al. 2002), whereby all sources of non-modelled uncertainty are assumed not to 

introduce bias, leaving the central value of response distributions unchanged, offering only 

additional variability. Thus, the total variability theorem (or law of total variance) (Weiss 2005) 

can be employed to combine the intra-model variability (original variance) with the inter-model 

variability (original bias) of n models to estimate the total, typically assuming an underlying 

lognormal distribution for both: 

                                                          𝛽𝑡𝑜𝑡𝑎𝑙
2 = 𝛽𝑖𝑛𝑡𝑟𝑎

2 + 𝛽𝑖𝑛𝑡𝑒𝑟
2  

(11)  𝛽𝑖𝑛𝑡𝑟𝑎
2 =

1

𝑛
∑ 𝛽𝑗,𝑖𝑛𝑡𝑟𝑎 

2

𝑛

𝑗=1

 

                          𝛽𝑖𝑛𝑡𝑒𝑟
2 =

1

𝑛 − 1
∑(ln 𝑥50̅̅ ̅̅ − ln 𝑥50

𝑗
)2

𝑛

𝑗=1

 

where 𝑥50
𝑗

 is the median EDP given IM or IM given EDP for model j, and 𝑥50̅̅ ̅̅  is the mean of 

all 𝑥50
𝑗

. 

Alternatively, one may choose to handle bias separately from variance. Then, rather than 

assuming that one’s model is perfectly unbiased, a bias correction factor is employed instead 

of fixing any deviations in the central (mean or median) value of the distribution. This approach 

obviously comes with heavy consequences as a baseline “accurate” model is required, as well 

as its response for seismic motion. Obviously, this can be the case only in academic studies, 

perhaps such as the present one, although in all frankness, none of the 18 + 18 models employed 

can come close to the accuracy of running actual shake table tests of the structure. Thus, 

employing this approach without some concrete data (e.g. from testing or validated numerical 

models) to back the choice of a bias correction factor is obviously haphazard akin to the use of 

a “fudge” factor. The advantage is clearly the one of reduced dispersion, as, by offering an 

accurate bias correction, one needs only employ the βintra of the model (or at worst the average 

βintra) rather than the βtotal of Eq. (11). 

Therefore, although only the first-order assumption is the recommended option for 

comparison due to the aforementioned issues, we shall discuss both options: The first one for 

general use and the second for understanding the contributions of both sources of uncertainty. 

To this effect, we show results for the relative bias in the median IM given EDP vis-à-vis the 

baseline model considered to be most accurate in each group of models delineated in the 
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following. Specifically, we only show results for θmax, dividing the [0, 10%] range into 

j = 1,…,200 discrete values. Then, the relative bias for the i-th model and the j-th θmax value is: 

𝑏𝑖𝑎𝑠𝑖,𝑗 =
 𝑆𝛼50%(𝑇1, 5%) | 𝜃𝑚𝑎𝑥

𝑗
 for model 𝑖

𝑆𝛼50%(𝑇1, 5%) | 𝜃𝑚𝑎𝑥
𝑗

 for baseline model
− 1 (12) 

Comparison within Each Model Category 

The comparison among models starts within each broad model category, where the relative bias 

remains low; thus, only the first-order assumption is fully applicable and only variance results 

are shown per category Eq. (11). Record-to-record variability βintra is similar for the n models 

of each category and practically the same as their mean, which remains at about 0.40 for the 

majority of θmax values. As illustrated in Fig. 7(b,d,f,h), record-to-record variability has a 

dominant effect on the total MDOF dispersions. On the other hand, model-to-model dispersion 

within the M3Bx and M2Bx categories is less than 0.05 for θmax ≤ 4%. Higher model-to-model 

dispersion appears in M2Gx and M1Bx models, especially for drift ratios of 2–4%, due to the 

aforementioned overstrength of some encountered in cases, where the full expressions of 

Lignos and Krawinkler (2011) were employed. In contrast, as shown in Fig. 8(b), the two 

components of variability have a similar contribution to the total dispersion of SDOFs, 

especially, for drift ratios higher than 1.5% where the large differences due to fitting the 

capacity curve inadvertently increase the inter-model variability. 

Comparison among Different Model Categories 

Between models of different categories, bias can be considerable. Thus, results for both of the 

two bias-variance treatments are shown. The variance for the first-order assumption, 𝛽𝑡𝑜𝑡𝑎𝑙
2 , is 

calculated from Eq. (11), similarly to the comparison within each model category. For the 

second option, bias was computed by Eq. (12) for the same 200 θmax values linearly spread 

within 0–10%. Furthermore, as summarized measures of bias over multiple models and the 

entire range of response, we employ the average absolute bias avgbiasj for each j-th θmax value 

for the n models of each set, and its mean, avgball, over the 160 discrete θmax values among 

0% and 8%: 

𝑎𝑣𝑔𝑏𝑖𝑎𝑠𝑗 =
1

𝑛
∑|𝑏𝑖𝑎𝑠𝑖,𝑗|

𝑛

𝑖=1

 (13) 

𝑎𝑣𝑔𝑏𝑎𝑙𝑙 =
1

160
∑|𝑎𝑣𝑔𝑏𝑖𝑎𝑠𝑗|

160

𝑗=1

 (14) 

Τhe comparison was made both between models with similar element types and between 

more widely varied model sets. The baseline (“perfect”) model for each set is the 3D one. 

Among models with lumped plasticity elements and models with distributed plasticity 

elements, the first were assumed more reliable, because they perform better near collapse. In 

addition, results of comparison both with and without the inclusion of SDOF models are 

presented due to their low fidelity for a high-rise structure. 

Fig. 9 shows the comparison results between the models where distributed plasticity fiber 

section elements were employed versus the corresponding SDOFs, with M3B3 assumed as the 

baseline model. As illustrated, record-to-record variance has higher contribution to the total 

dispersion than the inter-model variability that ranges from 0.02–0.11 for θmax up to 4%. At the 

same time, relative bias (Fig. 9(b)) varies within 0–0.10 for the MDOF models. As expected, 

SDOFs introduce higher bias and dispersion when they were included into the calculation. For 
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low θmax ratios (<3%) SDOFs shows negative bias ratios due to the “hardening” behavior of 

the MDOFs: The latter show on average lower deformations than what the equal displacement 

rule would imply, or equivalently higher IM values for the same deformation compared to the 

SDOFs. The SDOFs also fail to capture the significant P-Δ effects that dominate the response 

of the building. By assuming three limit states (LS) at the specific θmax thresholds of 0.75%, 

2%, 4%, which approximate the “immediate occupancy”, “life safety” and “near collapse” LS, 

the avgbias was calculated equal to 0.02, 0.14, and 0.05 respectively, whereas avgball = 0.14. 

When excluding the SDOFs from the calculations we get avgbias = 0.03, 0.08, 0.05 at the three 

LS and avgball = 0.05, all becoming clearly lower. 

Likewise, Fig. 10 illustrates the results for a set of 2D models. Specifically, the set includes 

all the 2D models from M2Gx, M2Bx and M1Bx model categories except for the models where 

elastic elements were employed for the columns. The M2B4 was assumed as the baseline model 

for the relative bias calculation. From the IDA curves, the My overstrength of the models, where 

the full expressions of Lignos and Krawinkler (2011) were employed, becomes apparent for 

θmax > 2.50%. Thus, those models show high “bias” (>0.2) at high θmax ratios, while this fact 

also affects the inter-model dispersion for this set at the same drift ratios. Here, at the three LS, 

avgbias = 0.03, 0.02, 0.17, while avgball = 0.09. Note that the selection of the baseline model 

naturally colors our results. Had we chosen as baseline the models based on the expressions of 

Lignos and Krawinkler (2011), e.g. M2G4, all others would become associated with bias. 

Hence such values should be taken as indicative of the differences among models, rather than 

an actual judgement on their merits. 

Fig. 11 presents the comparison among all the models that were employed for the purposes 

of this study, where the 3D lumped plasticity model (M3B2) was assumed as the baseline 

model. In general, the 2D models show lower strength than the 3D models (negative bias) 

except for those where the full expressions of Lignos and Krawinkler (2011) were employed. 

Moreover, the IDA curves of the SDOFs that were produced from those models match better 

with the IDA curves of the MDOFs due to the lower ductility of those MDOFs because of the 

restricted ultimate rotational capacity of the members. As illustrated in Fig. 11(d) and Fig. 11(e) 

there is notable difference in the inter-model variance when SDOFs are included. Specifically, 

model-to-model dispersion until the “near collapse” LS varies within 0.04–0.12 without 

SDOFs and within 0.08–0.18 when taking them into account. At the three LSs considered, we 

got avgbias = 0.08, 0.19, 0.15 and avgball = 0.15 with SDOFs, whilst avgbias = 0.09, 0.10, 

0.14 and avgball = 0.13 when these were excluded from the calculations.   

Now, we turn to the mean (average) response (μ) of each model type. Fig. 12(a) illustrates 

the average of the median IDA curves within each model category, whereas the relative bias of 

the mean response to the baseline 3D category (M3Bx), as it was calculated via Eq. (12), is 

captured in Fig. 12(b). In general, 2D models show lower strength than the 3D ones with 

relative bias within 0–0.18. Yet, M2Gx and M1Bx models differs from the M2Bx models for 

θmax within 2–4% due to the overstrength of the models where the full expressions of Lignos 

and Krawinkler (2011) were employed. On the other hand, SDOFs fail to capture both the 

hardening behavior of the MDOFs at drift values within 2–4% and the significant P-Δ effects 

of the 20-story building. This does not preclude the use of different fitting approaches or 

pushover-based methods that can better capture the MDOF response (Vamvatsikos and Cornell 

2005b; Chopra and Goel 2002), but the results obtained with the general N2 method (Fajfar 

2000) are certainly indicative of the difficulty in getting reliable outputs out of an SDOF system 

for a higher-mode influenced building. 

Fig. 13(a) depicts the ratio of the record-to-record dispersion (βintra) of each broad model 

category over the βintra of M3Bx models. As illustrated, 2D model categories show in general 

similar record-to-record variability with 3D models, while SDOFs show remarkably lower 

record-to-record variability for drift values up to 5% due to the model’s low sophistication 
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level (single spring model). Furthermore, Fig. 13(b) shows the bias of mean SDOFs response 

over the corresponding MDOFs mean response for each model category. The results confirm 

the aforementioned differences between SDOF and MDOF median IDA curves. In addition, 

the bias for M2Gx and M1Bx categories is higher than M3Bx and M2Bx due to the restricted 

ductility of some models (M2G3, M1B3) that affects the SDOFs backbones and consequently 

the IDA curves of those equivalent SDOF models as also captured in Fig. 8(a). 

Provisional Recommendations 

A final recommended total variance for each model category was calculated based on the first-

order assumption and the total variability theorem (Eq. (11)). For the most sophisticated model 

category, M3Bx, which is assumed to be the baseline, βtotal can only come from the results of 

the group of 3D models, as captured in Fig. 7(b). Then, for the next category in terms of model 

complexity and fidelity (2D full bay frame) Eq. (11) can be expanded as: 

𝛽𝑡𝑜𝑡𝑎𝑙𝐹𝑀2𝐺𝑥
2 = mean(𝛽𝑡𝑜𝑡𝑎𝑙𝑀3𝐵𝑥

2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐺𝑥
2 ) + [std(𝜇𝑀3𝐵𝑥, 𝜇𝑀2𝐺𝑥)]2 (15) 

𝛽𝑡𝑜𝑡𝑎𝑙𝐹𝑀2𝐵𝑥
2 = mean(𝛽𝑡𝑜𝑡𝑎𝑙𝑀3𝐵𝑥

2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐵𝑥
2 ) + [std(𝜇𝑀3𝐵𝑥, 𝜇𝑀2𝐵𝑥)]2 (16) 

where mean(x1,x2,…,xN) and std(x1,x2,…,xN) denote taking the mean and the standard deviation, 

respectively, of their arguments x1,x2,…,xN ; μX and βtotalX are the mean and total dispersion, 

respectively, of IM given the EDP response of category X. Considering M2Gx and M2Bx as a 

single 2D multi-bay frame category leads to: 

  𝛽𝑡𝑜𝑡𝑎𝑙𝐹2𝐷𝐹𝑈𝐿𝐿
2 =mean(𝛽𝑡𝑜𝑡𝑎𝑙𝑀3𝐵𝑥

2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐺𝑥
2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐵𝑥

2 )
+ [std(𝜇𝑀3𝐵𝑥, 𝜇𝑀2𝐺𝑥, 𝜇𝑀2𝐵𝑥)]2   

(17) 

Moreover, for the M1Bx the final total dispersion was calculated as: 

𝛽𝑡𝑜𝑡𝑎𝑙𝐹𝑀1𝐵𝑥
2 = mean(𝛽𝑡𝑜𝑡𝑎𝑙𝑀3𝐵𝑥

2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐺𝑥
2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐵𝑥

2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀1𝐵𝑥
2 )

+ [std(𝜇𝑀3𝐵𝑥, 𝜇𝑀2𝐺𝑥, 𝜇𝑀2𝐵𝑥 , 𝜇𝑀1𝐵𝑥)]2   
(18) 

Finally, for the SDOFs keeping in mind the dominant bias effect that is present and makes the 

first-order assumption quite questionable, the total variance is: 

𝛽𝑡𝑜𝑡𝑎𝑙𝐹𝑆𝑥𝑥𝑥
2 = mean(𝛽𝑡𝑜𝑡𝑎𝑙𝑀3𝐵𝑥

2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐺𝑥
2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀2𝐵𝑥

2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑀1𝐵𝑥
2 , 𝛽𝑡𝑜𝑡𝑎𝑙𝑆𝑥𝑥𝑥

2 )
+ [std(𝜇𝑀3𝐵𝑥, 𝜇𝑀2𝐺𝑥, 𝜇𝑀2𝐵𝑥, 𝜇𝑀1𝐵𝑥, 𝜇𝑆𝑥𝑥𝑥)]2 

(19) 

Fig. 14(a), shows the total variances as these were computed from Eq. (15)–(19) with θmax 

as EDP. The final total dispersion ranges from 0.36 to 0.43 both for the 3D models and the 2D 

models, whereas being lower for the SDOFs due to the lower intra-model dispersion and 

consequently lower βtotal for those models Fig. 8(b), Fig. 13(a). By changing the EDP to PFA 

in the X direction for MDOF categories (as a PFA estimate cannot be easily rendered by 

SDOFs), Fig. 14(b) illustrates the remarkably higher total variance that was calculated, namely 

0.68–0.78, with 3D models coming a bit higher compared to the 2D ones.  

Taking the geometric mean of both the horizontal components, Sagm(T1,5%), as IM in Fig. 

15, 3D models show higher dispersions than the 2D ones, whereas both for 3D and 2D 

categories lower dispersions were obtained when PFA was employed as EDP vis-à-vis the 

arbitrary component, Sa(T1,5%), results. Similar results were taken for θmax when the average 
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spectral acceleration, AvgSa, was employed as IM (Fig. 16), while lowered values were also 

found for PFA, in line with the findings of Kazantzi and Vamvatsikos (2015). 

Conclusions 

The model type effects on the estimated seismic response are presented for a symmetric regular 

20-story steel moment-resisting frame. During analysis, the significant computational cost that 

is associated with the use of 3D models was confirmed, as well as, the differences in 

computational time between the models with distributed plasticity elements and those with 

lumped plasticity elements due to difficulties in convergence for the former. The use of lumped 

plasticity elements with fiber-end-sections strikes an obvious compromise between the two. 

In addition, the models where the full expressions of Lignos and Krawinkler (2011) were 

employed, show significant overstrength vis-à-vis just employing an average steel yield 

strength, especially for the post-elastic response. The total dispersion within each MDOF 

model category varies within 0.33–0.42, the record-to-record variability within 0.33–0.41 and 

the model-to-model dispersion among 0.01–0.15 for interstory drift ratios up to 4%. 

Relative bias among the MDOF models for the elastic, the near-(nominal)-yield and the near-

collapse response ranges from -0.20 to 0.20. This low bias for the latter two cases is mainly 

due to the significant P-Δ effects for this tall building, which dominate the response at high 

displacements, thus dwarfing the contribution of modeling details. This would not be the case 

if, for example, a plan-asymmetric or lower height (e.g. 6-story) building was investigated. 

Considerable relative bias also appears for SDOFs as their fidelity is quite low for a high-rise. 

As a final proposal, the total dispersion of the MDOFs varies within 0.33–0.45 when the 

maximum interstory drift ratio is employed as EDP, being about the same for all the spectral 

acceleration IMs used and practically equaling the record-to-record variability. When the peak 

floor acceleration was employed as EDP, the final total dispersion ranges from 0.60–0.78 for 

all the MDOF categories when the first-mode spectral acceleration (arbitrary or geomean) is 

the IM, while lower values of 0.55-0.68 apply for the average spectral acceleration. Note that 

current literature recommends additional uncertainties due to model parameters of 0.05–0.15, 

which implies that, if the two contributions are combined in a square-root-sum-of-squares 

fashion, record-to-record variability will dominate over all sources of uncertainty. 

Furthermore, the aforementioned results denote that for a regular building without 

significant torsion effects there is no big difference among 3D and 2D models. In other words, 

the building under investigation is an ideal building for separating the response in X direction 

and the response in Y direction. This fact is supported by the symmetry of the SMRFs, where 

only the corner columns operate in the two main direction simultaneously during the seismic 

response. Nevertheless, it is suspected that the model type effects may rise in importance for 

irregular buildings, shorter buildings or for buildings with lateral-load resisting systems that 

cannot easily redistribute lateral forces.  
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Figures 

             

 

 
(a) (b) 

Fig. 1. (a) Plan of the building. (b) MRF in Χ direction. 

 

     
      (a)       (b)        (c)   (d) (e) 

Fig. 2. Building models (red circles denote the ground level and the basements): (a) M3Bx 

model (the central node at each floor is indicated in red). (b) M2Gx model. (c) M2Bx model. 

(d) M1Bx model. (e) Sxxx model. 

 

 
Fig. 3. View of the left half of the MRF in the X direction (left) and of the single-bay frame 

model (right). 
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(a) (b) 

Fig. 4. Backbone fitting to generate an Sxxx model: (a) M3B2 Pushover curve. (b) S3B2 F*-

δ* curve. 

 

   
(a) (b) 

  
(c) (d) 

Fig. 5. Pushover Analysis results: (a) 3D with basements (M3Bx). (b) 2D no basements 

(M2Gx). (c) 2D with basements (M2Bx). (d) 2D one bay with basements (M1Bx). 
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(a) (b) 

Fig. 6. Indicative results for model M3B2: (a) IDA curves, (b) 16%, 50%, 84% Sa|θmax fractiles. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

Fig. 7. ΜDOF median IDA curves and dispersions βtotal, βintra and βinter via Eq. (11): (a) M3Bx 

median IDA curves. (b) M3Bx dispersions. (c) M2Gx median IDA curves. (d) M2Gx 

dispersions. (e) M2Bx median IDA curves. (f) M2Bx dispersions. (g) M1Bx median IDA 

curves. (h) M1Bx dispersions. 

 

  
(a) (b) 

Fig. 8. SDOF median IDA curves and dispersions: βtotal, βintra, and βinter via Eq. (11): (a) Sxxx 

median IDA curves. (b) Sxxx dispersions. 

 

   
(a) (b) 
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(c) (d) 

Fig. 9. Comparison between fiber models of each category: (a) Median IDA curves. (b) 

Relative bias (Eq. (12)) considering M3B3 as the baseline model. (c) Dispersions including the 

SDOFs (Eq. (11)). (d) Dispersions without the SDOFs (Eq. (11)). 

 

   
(a) (b) 

 
(c) 

Fig. 10. Comparison between 2D models except for those where elastic elements were 

employed for the columns: (a) Median IDA curves. (b) Dispersions (Eq. (11)). (c) Relative bias 

considering M2B4 as the baseline model (Eq. (12)). 
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(a) 

  
(b) (c) 

  
(d) (e) 

Fig. 11. Comparison between all models: (a) Median IDA curves of all models (MDOF: solid 

line, equivalent SDOF: dashed line). (b) Relative bias (Eq. (12)) considering M3B2 as the 

baseline model (MDOF: solid line, equivalent SDOF: dashed line). (c) Relative bias (Eq. (12)) 

considering M3B2 as the baseline model without the SDOFs. (d) Dispersions with SDOFs (Eq. 

(11)). (e) Dispersions without SDOFs (Eq. (11)).  
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(a) (b) 

Fig. 12. (a) 50% IDA curves of the mean response μ for each model category. (b) Bias of the 

mean response considering M3Bx as the baseline category. 

 

  
(a) (b) 

Fig. 13. (a) Ratio of mean record-to-record variability (βintra Eq. (11)) between categories 

considering M3Bx as the baseline category. (b) Bias between mean SDOF and mean MDOF 

response at each category. 

 

  
(a) (b) 

Fig. 14. Total dispersion βtotalF for arbitrary Sa(T1,5%) as IM given: (a) Maximum interstory 

drift ratio (θmax). (b) Peak floor acceleration (PFA). 
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(a) (b) 

Fig. 15. Total dispersion βtotalF for geomean Sagm(T1,5%) as IM given: (a) Maximum interstory 

drift ratio (θmax). (b) Peak floor acceleration (PFA). 

 

  
(a) (b) 

Fig. 16. Total dispersion βtotalF for AvgSa as IM given: (a) Maximum interstory drift ratio (θmax). 

(b) Peak floor acceleration (PFA). 
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Tables 
Table 1. Overall results of the modal and the pushover analysis. 

 

Model Τ1x (s)++ Τ1y (s)++ Τ2x (s)++ Vmax (kN) tpo (s)† Model Τ* (s) F* (kN) 

M3B1 3.64 3.31 1.26 9907.23 83 S3B1 3.99 7389.89 

M3B2 3.61 3.29 1.25 9928.20 95 S3B2 3.90 7331.70 

M3B3 3.68 3.34 1.17 8956.44 315 S3B3 3.98 6636.68 

M2G1 3.81 - 1.33 8766.18+ 30 S2G1 3.80 6405.12+ 

M2G2 3.78 - 1.32 8779.38+ 24 S2G2 3.79 6375.08+ 

M2G3 3.78 - 1.32 8770.50+ 9 S2G3 3.78 6365.90+ 

M2G4 3.78 - 1.32 10862.48+ 6 S2G4 3.80 8030.36+ 

M2G5 3.78 - 1.32 10862.48+ 6 S2G5 3.78 7928.16+ 

M2G6 3.83 - 1.33 8678.42+ 160 S2G6 3.83 6358.92+ 

M2B1 3.84 - 1.34 8617.34+ 35 S2B1 3.85 6322.56+ 

M2B2 3.82 - 1.33 8627.50+ 35 S2B2 3.81 6320.04+ 

M2B3 3.86 - 1.33 8562.26+ 129 S2B3 3.86 6311.56+ 

M2B4 3.85 - 1.33 8496.24+ 68 S2B4 3.85 6225.26+ 

M1B1 3.78 - 1.32 8670.78+ 11 S1B1 3.79 6285.18+ 

M1B2 3.76 - 1.32 8683.28+ 9 S1B2 3.76 6367.44+ 

M1B3 3.76 - 1.32 8673.22+ 6 S1B3 3.77 6350.37+ 

M1B4 3.76 - 1.32 10750.80+ 6 S1B4 3.77 7882.97+ 

M1B5 3.76 - 1.32 10750.80+ 6 S1B5 3.76 7883.56+ 

+ The results from the half building multiplied by 2. 
++T1x, T2x the two first vibration periods in X direction and Τ1y the first vibration period in Y 

direction. 
† Time that was required to perform pushover analysis. 

 


